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Application of a Total-Angular-Momentum Basis to Quantum-Dot Band Structure
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Multiband envelope theory is reformulated in terms of a basis of total envelope and zone-center Bloch
angular momentum. The k p operator is scalar with respect to the total-angular-momentum operator
and hence is block diagonal in its eigenbasis. The projections of the Hamiltonian into the F 2 and the
F 2 subspaces of total angular momentum are derived and quantum-dot band structure is calculated
in GaAs(AlGaAs) and InAs(GaSb) systems as an example application of the formalism.

PACS numbers: 73.20.Dx

Multiband envelope theory has emerged as a powerful
extension of the k p formalism for calculation of band
structure in semiconductor heterostructures. ' The un-

derlying motivation of this formalism is based on the
bulk k p Hamiltonian. In short, this Hamiltonian can
be viewed as originating from an envelope wave equa-
tion. For the special case of flat energy bands (i.e., bulk
semiconductor material) the envelopes are plane-wave
functions that maintain the lattice symmetry. In gen-
eral, however, the energy bands will have spatial depen-
dences as, for example, results in a superlat tice or
quantum-well structure. For these cases, solution of the
envelope wave equation will yield new envelope functions
that do not, in general, preserve the translational or the
rotational symmetry of the underlying lattice. Interest-
ingly, however, the lattice translational symmetry does
influence the preferred coordinate system, Cartesian
coordinates, used in formulating the envelope wave equa-
tion.

Until recently, this observation has had little conse-
quence in heterostructure band-structure calculations,
since most of the semiconductor heterostructures studied
are inherently one dimensional, thus lending themselves
to a solution in a Cartesian coordinate system. Several
classes of heterostructures with two- and three-dimen-
sional spatial dependences are of increasing interest,
however. Quantum wires and quantum dots are exam-
ples. These structures can be viewed as two- and three-
dimensional extensions of the conventional quantum
well. Their band structure and the nature of their elec-
tronic state space is of importance in potential device ap-
plications. Separable, finite, two- and three-dimen-
sional potentials representing realistic quantum dots and
quantum wires cannot be constructed in Cartesian coor-
dinates, however. Therefore, to compute band structure
in hypothetical structures, either an infinite potential in

Cartesian coordinates can be applied or the envelope
wave equation must be solved in cylindrical or spherical
coordinates with a corresponding separable finite poten-
tial. The former approach is unphysical for small struc-
tures and the latter approach is tedious, involving a solu-
tion of coupled partial diA'erential equations.

In this Letter we reformulate multiband envelope
theory using a basis which takes advantage of the sym-
metry imposed by the heterostructure and which simul-
taneously simplifies the nature of the k p interaction
operator. The reformulation is based on states of total
zone-center Bloch (j) and envelope angular momentum
(I), i.e., F j+I. We note that a total-angular-
momentum basis was first used in a number of theoreti-
cal investigations of the Coulomb impurity problem.
Although the basis used here is similar, our motivation is
new and our results are more general. Specifically, our
use of these states is based on our observation, described
further below, that the k. p interaction operator is block
diagonal in the basis of total angular momentum. As a
direct result, our formalism provides a simple description
of band structure in centrosymmetric heterostructure po-
tentials, but is general enough to rigorously account for
eff'ects such as band coupling between conduction and
valence states in narrow-band-gap systems. The eight-
band I 6, I s, I 7 system (conduction, heavy-hole, light-
hole, and split-off' bands) will be discussed as an example
of the formalism and band structure in spherical
GaAs(AlGaAs) and InAs(GaSb) quantum dots will be
worked out.

Beyond the convenience and advantages of a separable
potential in three dimensions, it is not clear that a total-
angular-momentum basis will necessarily simplify the
solution of centrosymmetric heterostructure band struc-
ture. The key simplification results from consideration
of the k p interaction. In the envelope approximation
this operator is the vector inner product between en-
velope momentum (i.e., hk) and a momentum operator
which effectively operates only on the crystal periodic
part of the Bloch wave function. It is an essential
feature of the envelope approximation that these momen-
ta are conjugate to independent position coordinates (one
in the periodic Bloch space and the other in the slowly
varying envelope space). As such, the momenta are in-

dependent observables in the approximation, as are the
angular momenta associated with the respective spaces.
The inner product k. p is hence invariant under rotations
generated by the total-angular-momentum operator of
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where h/= j/+in/ is a spherical Hankel function and Y/'

is a spherical harmonic. Second, appropriate Clebsch-
Gordan weightings of the resulting Bloch-envelope prod-
uct kets are taken to form the total-angular-momentum
basis kets as follows:

~k, F,F, , la, j,l&= g Cj / ~ j,j-,la) ~k, l, l ),
jz+ lz F

(3)

where
~ k, F,F,l/jj, l) is a total-angular-momentum ket

the combined spaces; i.e., the k p operator is scalar with

respect to total angular momentum and block diagonal
in its eigenstate representation. As discussed below, this
block-diagonal simplification does not, in general, hold
for the remainder of the Hamiltonian because the crystal
symmetry is lower than that of the full rotation group.
We will show, however, that certain important projec-
tions of the full Hamiltonian are block diagonal in the
total-angular-momentum representation, decomposing as
follows:

H g HFF, , (1)
F Fz, n

where /r is subspace parity. To illustrate this point we

will consider the eight-band I 6, I 2, I s system and com-

pute projections of H into the F= —, and F = —', sub-

spaces. In what follows, we will denote the total-
angular-momentum quantum numbers as F and F-, the
zone-center Bloch total-angular-momentum quantum
numbers as j and j,, the zone-center Bloch orbital-
angular-momentum quantum number as la, and the
envelope-angular-momentum quantum numbers as l and

I:.
When the conventional multiband envelope formalism

is applied in the I 6, I 2, I s system, the Hamiltonian is con-

structed using the basis set l
~ j,j, , lg)

~
k)}. These states

are a product ket consisting of a zone-center Bloch ket

~ j,j:,lg) and an envelope ket ~k) representing a plane-
wave state with wave vector k. In the present formalism,
two modifications are made to the basis. First, the
Cartesian plane-wave kets

~
k) are replaced with spheri-

cal plane waves in anticipation of the centrosymmetric
heterostructure potential. These spherical waves,

~
k, l,

l, ) have the following projection into spherical coordi-
nates:

and jC/'/'} are the Clebsch-Gordan coefficients for the
F,F

space under consideration. It is important to note that
the zone-center total-angular-momentum states (i.e. ,

~ O, F,F, l// j,l&) will be energy eigenstates only when the
2j+1 states [~ j,j-,lz)} appearing in the summation are
degenerate. In such cases (the energy bands in the
r, , r7 I s system are an example), the corresponding pro-
jection of H is as given by Eq. (1). In general, however,
the crystal field will split the degeneracy of the 2j+1
states I

~ j,j,lq&} and the zone-center total-angular-
momentum states corresponding to particular quantum
numbers (lq, j,l) will not be energy eigenstates. In the
present example the eff'ect of such bands can be included

by introduction of appropriate Luttinger coupling terms
in the system Hamiltonian. ' With Luttinger coupling
terms, the Hamiltonian is no longer block diagonal as
given in Eq. (1). It is important to note, however, that
the spherical approximation (i.e., Luttinger terms y2 and

y2 are set equal ) returns the block-diagonal form for
H. In the language of group theory, the states
I~O, F,F-, laj, l)} form a basis for representations of the
cubic double group which are, in general, reducible. In
the approximation y2

=
y3 the symmetry of the Hamil-

tonian is artificially raised to that of the full rotation
group so that these representations become irreducible.

Now consider the F= —,
' subspace. It is constructed

from spherical envelope states having integer-valued
angular-momentum quantum numbers, and from zone-
center Bloch states having angular-momentum quantum
numbers j= —,

' (I 6), j= —,'(I s), and j= —,
' (I2). Using

standard rules or a table of Clebsch-Gordan coefficients,
it is straightforward to show that the complete F= —,

'

subspace is twelve dimensional, comprising two six-
dimensional subspaces corresponding to F = ~ —,

' . H is

block diagonal in this subspace, comprising two six-
dimensional projections, Hl/2 ~ ~/2. These matrices fur-
ther reduce to two 3 x 3 projections owing to parity con-
servation. (This follows immediately from the selection
rule lz =lz+ 1 and l'=l ~ 1, which is easily verified for
the k p operator, and the fact that the total-angular-
momentum eigenstates are states of definite parity. )
These matrices have the identical forms given below.
The corresponding j and I quantum numbers and the
band index associated with the basis vectors are shown

explicitly on the columns of the matrix (i.e., ~ j,l), , ). In

addition, /r =0 (1) indicates even (odd) parity:

+1/2, + I/2

E,+h k /2m

( '- ) 1/2p4

( 1 ) I/2pe

i
-',

, /r+ I &,

(~ )I/2p

E, —(y~+ 2y2)k /2.
—Key, k 2

(-') "-p

E, —5 —yak /2.
(4)

where modified Luttinger terms have been included by unitary transformation of the conventional Luttinger Hamil-

tonian. In this expression, p= —ipk, where p is the Kane matrix element. In addition, E, , E, , and E, —5 denote the.
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conduction-band, heavy-hole (light-hole) band, and
split-off band energies at the zone center, respectively.
rn is the free-electron mass.

The eigenvalues of the Hamiltonian in Eq. (4) are
identical to three of four eigenvalues found for this sys-
tern using the normal k. p formalism. They give the bulk
dispersion relations associated with the conduction band,
the light-hole band, and the split-off band. As a result of
the preceding analysis, these eigenvalues are fourfold de-
generate in the F= —,

' subspace. The fourth, "missing, "
bulk eigenvalue, the heavy-hole band, does not emerge in

this space. The first signs of the heavy-hole band appear
in the F= —' subspace. Proceeding as before, it can be
shown that this space is spanned by 32 vectors. These
vectors break down into four eight-dimensional sub-
spaces corresponding to F- = —', —', ——', ——'. The
Hamiltonian is block diagonal with respect to these sub-

spaces and its projection further reduces owing to parity
conservation. Consequently, eigenenergies are eightfold
degenerate in this subspace. The odd-parity 4X4 pro-
jections of the Hamiltonian into the F= -' subspace ap-
pear below:

H~i2. F. =

E, +jit k /2m

(-'- ) "-p'

(-) '-'p*

( -'

) 1/2p

E,,
—(yi+2yp)k /2

JXy, k-'

I HH)

F-, —(yi —.2 y2) k '/2

(-,' ) '"p

E,,
—6 —yak /2

(5)

Here, LH and HH denote light hole and heavy hole, re-

spectively, F assumes the values -', , —,', ——,', —-', , and,
subsequent to computing the projections, a unitary trans-
formation has been applied on the inner 2&2 system
with resulting basis-vector definitions

I
LH) = ( I

—', 0),,

—
I

-",2),, )/J2 and I HH) =(I 3,0) +
I

3,2),. )/&2.
Equation (5) contains a 3X3 matrix which yields bulk
eigenvalues identical to those found with the F= —,

'

Hamiltonian projections (i.e., conduction, light-hole, and
split-off bands). The isolated 1 x 1 system with Eq. (5)
gives the dispersion relation characteristic of the heavy-
hole band.

Calculation of quantum-dot band structure using this
formalism is, with some minor exceptions, identical to
standard heterostructure envelope calculations. Eigen-
vectors of the Hamiltonian are computed interior and ex-
terior to the quantum dot. Boundary conditions are ap-
plied to arrive at a relation between spherical wave num-

bers. This condition is combined with the known energy
dispersion relations to determine the eigenvalues. The
only procedural differences are first, the use of spherical
Hankel waves rather than plane waves, and second, the
need in the present case for a boundary condition at the
origin. The latter is the requirement that the wave func-
tion be regular at the origin.

As a first example, we will compute the F= —' sub-

space ground-state eigenenergy of a quantum dot, in-

cluding only the conduction and light-hole bands (i.e.,

neglecting coupling to the split-off band). Results are
compared with those from a one-band effective-mass cal-
culation. In Fig. 1 (refer to left vertical axis) we present
the calculated confinement energy of the quantum dot
relative to the confinement energy predicted using the
one-band effective-mass model. This energy difference is

plotted as a function of quantum-dot radius. Two ma-
terial systems are considered: a large-band-gap system
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FIG. 1. Left axis: Difference between the quantum-dot
ground-state energies found using a one-band effective-mass
model and the total-angular-momentum formalism (two ma-
terial systems are considered). Right axis: Confinement ener-

gy for the two lowest-energy valence-band states in a GaAs
quantum dot plotted vs dot radius. Both one-band and multi-
band results are presented.

t

[GaAs(Alo3Gao7As)] in which agreement between the
one-band and multiband models is expected, and a
narrow-band-gap type-II system [InAs(GaSb)l in which
multiband effects in the quantum dot should be impor-
tant. This, in fact, is the first calculation of band struc-
ture in a narrow-band-gap quantum dot. The states in

these systems are twofold degenerate. Band energy con-
stants for GaAs(AlGaAs) are taken from Ref. 9, and for
InAs(GaSb) are taken from Ref. 10.

The one-band effective-mass Hamiltonian assumes a
parabolic bulk dispersion relation and it neglects mixing
of the zone-center conduction-band wave function with
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other bands for nonzero wave numbers. Both assump-
tions break down for small energy gaps and for strong
confinement by the quantum-dot potential. In compar-
ison against the multiband model, the ground-state bind-

ing energies are in excellent agreement for all quantum-
dot radii in the large-band-gap system. For the narrow-
band-gap system, however, large differences appear,
which become more pronounced for stronger confine-
ment (i.e., smaller radii).

As a second example, we consider the I s valence
bands in a GaAs quantum dot. Confinement-energy cal-
culations for the two lowest-energy valence states are
presented in Fig. 1 (refer to right vertical axis) using
both a one-band model and the multiband total-
angular-momentum formalism. The one-band model

utilizes a simple effective-mass equation for the heavy
holes with states characterized by envelope angular
momentum L (i.e., HH L=0 and 1 are presented). It
can be seen to underestimate the confinement energy at a
given dot radius. This happens because it neglects mix-

ing of the light-hole and heavy-hole bands induced by
the quantum-dot potential. The one-band model also

predicts a larger separation between the lowest-energy
states than predicted with the multiband theory. The
lowest-energy multiband eigenstates are mixtures of

~
LH) and

~
HH) having the envelope parity indicated in

the figure [note that the odd-parity case emerged in con-
sideration of Eq. (5)l.

In conclusion, we have presented a formalism for solu-

tion of band structure in quantum-dot heterostructures.
It is based on a reformulation of multiband envelope
theory in terms of a basis set of total zone-center Bloch
and envelope angular momentum. In this basis, the k p

operator is block diagonal. %e have derived the F= —,
'

and F= -', projections of this Hamiltonian for the eight-
band I 6, I 7, I 8 system and have demonstrated the formal-
ism by calculating the F=

& band structure in
GaAs(A1GaAs) and InAs(GaGb) quantum dots and the
F = —,

'
band structure in a GaAs quantum dot. Finally,

we note that in systems exhibiting cylindrical symmetry
(i.e., quantum wires), a formalism based on eigenstates
of F can be employed to simplify calculations in a
manner similar to that discussed here for quantum dots.
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