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Defects in Roll-Hexagon Competition
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The defects of a system where hexagons and rolls are both stable solutions are considered. On the
basis of topological arguments we show that the unstable phase is present in the core of the defects. This
means that a roll is present in the penta-hepta defect of hexagons and that a hexagon is found in the core
of a grain boundary connecting rolls with different orientations. These results are verified in an experi-
ment of thermal convection under non-Boussinesq conditions.

PACS numbers: 47.20.Bp, 47.25.Qv

Defects play an important role in the dynamics of
pattern-forming systems. Specifically, dislocations and
grain boundaries in convective patterns of rolls, and
spirals and centered defects in chemical reactions, have
been the object of several studies. ' However, the struc-
ture of defects has not been carefully analyzed in sys-
tems where two different symmetries coexist. This is a
very important case that appears very often in nature, a
typical example being the transition between hexagons
and rolls in thermal convection. The competition be-
tween patterns associated with different symmetries has
recently been discussed on the basis of general argu-
ments. The purpose of this Letter is to study defect
properties when hexagons and rolls are stable solutions in

a nonequilibrium pattern-forming system.
The competition between hexagons and rolls can be

described by means of three coupled Ginzburg-Landau
equations (GLH), which determine the behavior of the
three complex amplitudes A; of the sets of rolls describ-
ing the hexagonal structure. Each of them makes an an-
gle of 2tr/3 with each of the others. A qualitative
description of the nature of the cores of the various de-
fects which may be observed in this problem can be de-
duced from an elementary study of the following six-
dimensional dynamical system, obtained from GLH, in

the limit of homogeneous patterns:
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system (1) possesses four kinds of stationary solutions.
(i) The conductive state (0), given by [A, =0, j= 1,

2, 3], is stable for p & p2 =0, and unstable for p & p2.
(ii) Rolls, given by [A~ =Jpexp[ip~], A2=0, A3=0]

and any circular permutation, are unstable for p & p3
=a /(y —1), and stable for p & p3.

(iii) Hexagons are given by [A1=Rexp[ita~], A2=R
xexp[ip2], A3 Rexp[ipq]j, with (1+2y)R —aR —p
=0 and @=p] +pq+ p3 =0 or z. Those associated with
@=z exist for positive values of p, and are always unsta-
ble. The former exist for p & p~ = —a /4(1+2y). The
upper branch H+ (see Fig. 1) is stable only for

p~ & p & p4=a (y+2)/(y —1); the lower branch H
is always unstable.

(iv) The "mixed states" are given by IA ~
=R exp[i+~],

A2 =Rexp[ia2], A3 =Uexp[i+3]] or any circular permu-
tation, with U =a/(y —1), R = [(p —U )/(1+ y)] '

and @=0. They exist for p & p3 and are always unsta-
ble.
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The parameter a describes non-Boussinesq eftects. Its
sign can be chosen arbitrarily. We assume in the follow-
ing that a is positive, and y) 1, in order to insure the
stability of rolls for large values of p. The dynamical

FIG. 1. Stationary solutions of Eqs. (I), in a tt-hexagon-roll
phase space. The solid lines correspond to stable solutions;
dashed lines, to unstable ones. The mixed state M, interpolates
between rolls and hexagons.
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These solutions are given in Fig. 1. They have been
observed in several experiments ' and good agreement
with theoretical predictions has been found. However,
a detailed study of the defects in these patterns is still
lacking.

Let us now consider a set of possible initial conditions
for Eqs. (1). It can be mapped into a two-dimensional
manifold JK; in the six-dimensional phase space of the
above dynamical system. An initial point of At; lies
generically in the basin of attraction of one of the stable
stationary solutions, and will evolve towards it under the
dynamics. Nevertheless, it may also lie in the stable
manifold of one of the unstable stationary solutions. For
instance, when many stable solutions are coexisting,
some of these manifolds separate the various basins of
attraction of the stationary stable solutions. Thus, each
time A, ; intersects a stable manifold of a stationary un-

stable solution, the dynamics eventually leads to singu-
larities. Indeed, they correspond to loci where the sys-
tem locally reaches an unstable solution, and are located
on points or lines in the physical space (x,y). These
singularities can be seen as point (dislocations) and line
(grain-boundaries) defects, or fronts, and turn out to be
real defects or fronts of GLH (namely, when one takes
account of spatial inhomogeneities).

In what follows, we apply those considerations to de-
scribe the core of the dislocation of a hexagonal pattern,
and that of a grain boundary between two sets of rolls
which build up this hexagonal pattern. For p2 & p & p3,
hexagons H+ are the only stable stationary solution.
Let W, (S) denote the stable manifold of any unstable
solution S, and define IV, =W, US as its generalized
stable manifold. If the intersection of JK; and %V, is not
generically empty and is of dimension n & 2, hexagons
will have defects with a core of dimension n. Moreover,
the solution S will be observed at the core of those de-
fects. For p2 & p & p3, the only stationary unstable solu-
tions whose generalized stable manifold is of dimension
greater than 3 are the rolls R~ (see Fig. 1), with

j=1,2, 3, and dim['IV, (R, )1 =4. Thus, Jlt; and ')V(R )i
will intersect generically on points. Hence, the defect of
a hexagonal pattern is a point defect, at the core of
which one observes a roll structure. It is the well-known

penta-hepta pair, and can also be pictured as a pair of
dislocations on two sets of rolls which build the hexago-
nal pattern, since two of the amplitudes 2, vanish.

For p4& p, rolls R, are the only stable solutions. The
mixed states M; have five-dimensional generalized stable
manifolds, which separate the basins of attraction of
rolls. The generic intersections between JÃ; and %V, (M;)
are lines, which correspond to grain boundaries in the
physical space. Thus, the core of a grain boundary be-
tween two sets of rolls of a hexagonal structure is

characterized by the presence of a mixed state, in which
a third roll appears, but with an amplitude weaker than
the other two.

When different kinds of stationary solutions are
simultaneously stable, the singularities of (1) turn into
fronts or defects characterized by a large core. The
latter are seeds of nucleation.

A recent experiment on non-Boussinesq convection
allows us to verify these considerations in some detail.
The system under study is a shallow horizontal layer of
pure water heated from below. The layer of depth
d =0.18 cm is confined in a cylindrical cell of aspect ra-
tio I =r/d =20, where r =3.6 cm is the radius of the
cylinder. The bottom heating plate of the cell is made of
copper, while the top plate is made of sapphire, allowing
for optical inspection. An optical technique, based on
the local deflections of a laser beam allows us to measure
the vertically averaged temperature field T(x,y), pro-
duced by the convective motion. More details about the
experimental setup may be found in Ref. 6.

The experiment has been performed at the mean
working temperature of 28.3 C, where the Prandtl num-
ber of water is 5.62 and the horizontal diffusion time is

rI, =2.45 h. The convective motion appears when the
temperature difference hT between the two horizontal
plates is equal to hT, =12.62'C. With such a big /sT,
the temperature dependence of the transport coefficients
cannot be neglected (non-Boussinesq conditions) and,
therefore, a hexagonal pattern is formed near the convec-
tive threshold. When p =1 AT/hT, —is increased, at
p =p4=0.09 the hexagonal pattern is replaced by a pat-
tern of rolls. Vice versa, the roll-hexagon transition
occurs at p =p3 0.03 when h, T is decreased.

When a hexagonal pattern is developed, the stationary
defects observed in experiments consist of pairs of pen-
tagonal-heptagonal cells. However, in our experiment
no penta-hepta pairs were obtained spontaneously. In
order to analyze this kind of defect, a penta-hepta pair is

induced in some point of the convective pattern by means
of some extra heating, obtained by focusing the light
coming out of a powerful lamp. Once this defect is in-
duced it remains without variation for a very long time,
sufficient to make measurements. In Fig. 2(a) we report
the isotherms of T(x,y) at p =0.02; only a small portion
of the cell is shown in order to amplify the details. The
penta-hepta pair is easily observable in the center of the
plot [Fig. 2(a)].

Because of the presence of a rather regular hexagonal
pattern, the T(x,y ) may be decomposed into the sum of
three main sets of rolls:

3

T(x,y) = g A, (x,y)exp(i K,"x)+c.c. ,j 1

where all the information about the defect is contained
in the slowly varying amplitudes AJ(x,y), and the wave
vectors K~ have the modulus equal to the critical wave
vector K, . To obtain the amplitudes Aj we first compute
the Fourier transform F(K„,K~) of T(x,y). The Four-
ier spectrum S(K„,K,, ) =~F~ presents six peaks [Fig.
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15 FIG. 3. Defect in a pattern of rolls: grain boundary. (a)
Isotherms of the convective temperature field T(x,y) in a
small area of the cell at p 0.15. (b) Cross sections of the am-
plitudes R, , with j-0-3, along the line labeled CS1 in (a).
(c) As in (b) but the cross sections are done along the line la-
beled CS2 in (a).
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FIG. 2. Defect in a pattern of hexagons: penta-hepta pair.
(a) Isotherms of the convective temperature field T(x,y) in a
small area of the cell at p 0.02. (b) Spatial Fourier spectrum
of the field in (a). (c) Equiphase lines of w~. (d) Equiphase
lines of yi. (e) Cross sections of the amplitudes R, with

j 1-3 along the line labeled CSI in (a). (f) As in (e) but the
cross sections are done along CS2 in (a).

2(b)], whose centers of mass are at the vertices of the
vectors Kj and —K, . These vectors are disposed on a
hexagon in Fourier space (Fig. 2). Once the K~ are
determined, we consider first peak I and we shift
F(K„,K~) by —Ki, thus peak I is centered in the origin.
We filter out the contributions of all the other peaks by
multiplying the shifted F(K„,K~) by a low-pass filtering
function (Hamming window)' having a suitable cutoA'

in the range of the peak width. Finally, we anti-Fourier
transform to get the complex amplitude A~(x,y) of the
first set of rolls. We repeat the same procedure (shift of
—K, , low-pass filtering and antitransforms) for the two
other sets of rolls. An easy calculation allows us to have
the real amplitude Rj as well as the phase p~ for the
three sets of rolls that form the hexagonal pattern.

In Figs. 2(c) and 2(d), the two phases pi, p3 are
shown. We notice that in the core of the defect, i.e., in

the common side of penta-hepta cells, p] has a gap of
+2m around the core of the defect. The phase p3 has in-

stead no singularity. The phase p2 of the third mode has
the same behavior as p] but has a jump of —2x; as a

consequence it is confirmed that the sum @ of the three
phases is zero also in the defect. The jump of + 2n in

the phases of two sets of rolls indicates that there is a
dislocation in each of the two set of rolls I and 2. This is
confirmed by taking the amplitude Rj along some lines
that cross the singularity [lines labeled CSI and CS2 in

Fig. 2(a)]. The results are shown in Figs. 2(e) and 2(f),
where one can see that, far from the defect, the three
amplitudes are almost equal; i.e., they form a homogene-
ous hexagonal pattern. In contrast, in the core of the
penta-hepta pair, the two moduli R] and R2 go to zero,
whereas the third one, R3, increases locally in this re-
gion. This means that locally one has a pure roll in the
core of the defect; i.e., the unstable solution appears in

the defect of the stable solution.
On the other hand, when the pattern of rolls is well

developed, some grain boundaries with a local hexagonal
structure are observed (this defect is very stable and
remains without variation for more than 140rI, ) The set.
of rolls in this experiment is always rather regular in the
center of the cell. There are only a few grain boundaries
produced by the readjustment of the rolls in the cylindri-
cal container. We analyze now the core of one of these
grain boundaries. The isotherms around it are reported
in Fig. 3(a); as in Fig. 2(a) only a small portion of the
cell is shown.

Here we may divide Fig. 3(a) into an upper and a
lower domain. In the former we see that there is a regu-
lar set of rolls almost parallel to the y direction; let us
call the slowly varying amplitude of this set of rolls Ap.
Instead, in the lower domain in Fig. 3(a), we have two
other sets of rolls, one on the right, whose amplitude is

A], and one on the left, with amplitude A2. They join
themselves to the upper domain and form an angle of
about x/3 between them. By making the Fourier spec-
trum of the pattern of Fig. 3(a) we notice the presence of
eight peaks, indicating the existence, in the lower
domain, of another set of rolls (labeled 3) not observable
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in Fig. 3(a). This last set of rolls forms an angle of tr/3

with sets 1 and 2. The presence of four sets of rolls can
be understood by taking into account two systems of
GLH, each of them associated with the two above-
mentioned domains. We consider the sets of rolls 1 and

2 which form a grain boundary, which is a typical defect
of a system where there is a hexagon-roll competition.

To study this defect we use the same procedure as for
the penta-hepta pair to obtain the slowly varying ampli-
tudes R, and the phases ta, (with j 0-3) of the four
modes present in this pattern. In Figs. 3(b) and 3(c) we

show the amplitudes of the modes along the lines labeled
CS1 and CS2 in Fig. 3(a). From Figs. 3(b) and 3(c)
one concludes that the amplitude Ro of the rolls of the

upper domain goes to zero in the defect region; thus it

does not give any contribution to the defect formation.
The amplitude R~ (Rz) has a maximum where R2 (Rt)
has a minimum. In the core of the grain boundary
where the two sets, 1 and 2, interpenetrate, the ampli-

tude Ri reaches its maximum, which is smaller than

those of the two oblique ones. Therefore, at the core of
this typical defect in the pattern of rolls 1 and 2, the hex-

agonal unstable solution is encountered. Furthermore,
we have checked that the phases do not present any

singularity, thus confirming that there are no dislocations
in the four sets of rolls.

In conclusion, we have shown from topological argu-
ments, and confirmed in an experiment of thermal con-
vection, that the unstable solution appears in the core of
the defects of convective patterns where hexagon and roll

symmetries are in competition. The penta-hepta pair
can be seen locally as a roll, and a grain boundary be-
tween two oblique rolls gives rise locally to hexagons.
These defects play an important role in the dynamics of
the transition between these two symmetries because
they become seeds of nucleation for the other phase, as
indeed has been observed in this experiment.
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