
VOLUME 65, NUMBER 19 PHYSICAL REVIEW LETTERS 5 NOVEMBER 1990

EScient Molecular Dissociation by a Chirped Ultrashort Infrared Laser Pulse

Szczepan Chelkowski, ' Andre D. Bandrauk, "and Paul B. Corkum

"'Departement de Chimie, Faculte des Sciences, Universite de SherbrookeS, herbrooke, Quebec, Canada JIK 2Rl
'Di-vision of Physics, National Research Council, Ottawa, Ontario, Canada Kl A OR6

(Received 11 June 1990)

Dissociation probabilities and populations of excited vibrational states are calculated numerically for
interaction of a Morse oscillator with a chirped, ultrashort (tr (10 " sec), intense laser pulse. It is

shown that if the pulse frequency ro(t) decreases at a specific rate, adapted to the molecular anharmon-

icity, the dissociation probability is many orders of magnitude higher than for a monochromatic pulse of
the same intensity. Such pulses should be useful for more eScient multiphoton dissociation of molecular
bonds.

PACS numbers: 42.50.Hz, 33.80.Gj, 33.80.Wz

This paper introduces a new and practical approach to
the control of molecular dissociation. We show that an

appropriately chirped pulse can selectively excite a dia-
tomic molecule to high vibrational levels. We also show

that dissociation rates are sensitive to the form of the ex-
citation pulse. Both selective excitation and dissociation
are experimentally accessible as a result of recently
developed ultrashort-pulse techniques' to generate
broad-bandwidth midinfrared radiation which can be
phase and amplitude controlled with sufficient precision
to follow the level spacing of a diatomic molecule.

The anharmonicity of molecular vibrations has been
the major obstacle to dissociation of small molecules
both in theoretical calculations and in experiment.
Recent numerical studies of dissociation of HF using
monochromatic subpicosecond pulses show a dissociation
probability smaller than 10 for intensities less than
10' W/cm . Although such calculations often proceed
to still higher intensities, judging from atomic experi-
ence an intensity of only 3 & 10' W/cm may be unreal-

istically large since, for I) 3x10' W/cm, the ioniza-
tion rates will exceed dissociation rates for many mole-
cules. In other words, models in which only vibrational
degrees of freedom are considered cannot be used for
such high intensities. The only possible conclusion from
these models is that monochromatic dissociation without

ionization is unlikely. In contrast, we show that a pulse
whose frequency is decreasing as a function of time, in

such a way that the pulse is resonant with transitions be-
tween higher levels for later times, increases the dissocia-
tion probability by many orders of magnitude.

The behavior of two-level systems ' ' suggests how to
devise appropriately shaped pulses. The transition am-

plitudes, in such systems, are functions of the pulse area
defined by

o(t) =(p/h) „c(t')dt',

H =Hp+ V(x, t), Hp =
(2)

V (x, t ) =D[1 —exp( —ax)] —d ixEM U(t)cos [co(t)t],
~here x =r —rp, rp is the equilibrium separation of nu-
clei, m is the molecule's reduced mass, dl is the effective
charge or dipole gradient, E~ is the maximum value of
the radiation electric field, and U(t) is the pulse envelope
chosen equal to 1 at the maximal value of the electric
field. The energy eigenvalues E„of the Morse oscillator

6, [3,14

E„=h cop(n+ —' ) [I —B(n+ —,
' )/2], (3)

where

vibrational levels of the molecule, and each having the
area [defined by (I) in which p =p„„+i] equal to tr

should completely transfer the population from the
ground state (n 0) to the Nth excited state.

Such pulse sequences can probably be constructed us-

ing emerging experimental techniques. ' For low-

intensity radiation, dissociation would require many
components to the pulse sequence, each satisfying exact
resonance and constant-area conditions. Since the tran-
sition frequencies and transition dipole moments between
higher excited states are usually not well known, this
may be impractical. Moreover, at low intensities the
whole sequence could take longer than the various relax-
ation times in the molecular medium. Thus we concen-
trate on sufficiently high intensities that the dynamic
Stark effects overwhelm these problems and a continu-
ously chirped pulse can be used. Such chirped pulses can
be comparatively easily generated using modern laser
technology.

Our calculation scheme describing the interaction of
radiation with a Morse oscillator is based on the time-
dependent Schrodinger equation with the Hamiltonian

—h |1
2m

where p is the transition dipole moment and c(t) is the
slowly varying electric-field envelope. The complete in-

version of population occurs when the pulse area is equal
to x. Thus one might expect that a series of N pulses
each of frequency co„„+i=(E„+i E„)/h, where E„ar—e

r [j2
6 ahcop=28D, 8=
2mD

n =0, 1, . . . ( I/B —I/2.

(4)
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Our task now is to find such a pulse shape
s(t) =EMU(t) and pulse frequency cu(t) that the reso-
nance and area conditions mentioned in the introduction
are satisfied; i.e., we require that

r I

(po, i/h) „, s«)« =So,

f In+I
(p„„+I/O) „, a(t)dr =S,

n=l, . . . , N —1, ~here Sp, S are area values, and A is

the level number up to which the approximate resonance
conditions

h [N (1„)+ co (r„+i ) ]/2 =E„+i
E—„

=hcuo[1 —B(n+1)] (6)

are imposed. Equations (5) fix the pulse area in the in-
terval (r„,r„+i) and Eq. (6) ensures that in the center of
this interval the pulse is resonant with the transition
from the nth to (n +1)th level. The following choice of

I pulse shape U(r),

[1 —sech(ao)] '[sech[ao(t —to)/to] —sech(ao)j for 1 &ro,
U(r) = ~ 1 for to & t & r, ,

[1 —sech (aF )] ' [sech [aF (1 —t, )/to] —sech(aF )j for t & t, ,

ru(r ) = coo I for r & 1o . (8)

Equations (5)-(8) determine to, t I, . . . , r~ uniquely and
the function co(t) can be found by interpolation. An
analytical expression for ru(t) can be found when the
harmonic-oscillator formula for dipole moments

p„„+I=()i+ I) po I (9)

allows us to integrate analytically conditions (5). In Eq.
(7) ao, aF, t„and to are free parameters determining the
pulse switching on and switching off. They are chosen
here to be ap 2.5, aF 6.25, t, =t~+0.2tp. We as-
sumed that chirping starts at t =to, i.e., when the pulse
achieved its maximal value. Thus

where

2 [z/4 —tan ' [exp( —ao) ]j/ao —
1

1
—sech(ao)

The pulse shapes U(t) and chirps co(t) resulting from
the above formulas, for laser peak intensities 1=(c/
8rr)EM (the incident radiation is assumed to be linearly
polarized) equal to 10' and 10' W/cm, are shown in
Figs. 1(a) and 2(a).

We have integrated numerically the time-dependent
Schrodinger equation, using the Hamiltonian given by
Eq. (2), pulse shapes and chirps we have just found, and
the following values of parameters, "corresponding to

holds. For HF Eq. (9) is a good approximation up to the
twelfth level. Using Eq. (9) the second part of (5), with
U(r) given by (7), becomes

r(n+ I) r(n) =—Q(n+1)

where n =1,2, . . . , lV, t(n) = t„,and—
Q =Sh/po, IEM .

(10)

The function t(n) can be easily found from (10) if one
uses the Taylor expansion t(n+1)=t(n)+dr/dn Thus.
one gets

1 0
PO

LLI

or—
CD
O
CL
CL

0, 0

I= 'I 0 W/cm'

I I
I

I I I

1(n) =2Q[(n+I) ' ' —2' ']+r I (12)

and from (6) co(4) =—co(n) =coo(1 —Bn —B/2). Thus
after calculating from Eq. (12) n as a function of r one
gets the following form of a chirp, which approximately
satisfies requirements (5) and (6):

ru(r )/ruo = B[(r II ) '/4Q '--
~(t) /~D I

I I I I I I

—i (o)

+2'"(r r)/Q+ -'1+1—

tp=

2356

S/So —2[2' —( —, ) ' ]

A+1
S

t] = At(),
p

(14)

The values of tp and t], calculated from the first part of
Eq. (5) and from Eq. (8), are given by

0 4;3 BC' 120
IM: (CYCLF S)

FIG. 1. Time dependence of (a) pulse shapes ( )
U(t) =s(t)/E~, (---) chirps co(t)/coo I, and (b) the resulting
populations (---) Po(t), ( ) PI(t), ( ) Ps(t), (---)
PI4(t), and dissociation probability ( ) Po(t), at the inten-
sity 1=10"W/cm', N =8, S =SII =1 5' Icycle .=8..41 fm.
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FIG. 3. Dissociation probability ( ) Po and (---)
Po+Pl at the end of chirped pulse for the laser int 't
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probability PD(t) using the following formulas:

23

P.(t) -I&@.Iit(tc)lI', PD(t) =1 —g P„(t).
n 0

(17)

FIG. 2. ThThe same as in Fig. 1 but for the intensity I=10"
W/cm', N-12, S=1.8z, So=1.2z.

itt(x, t+8t) =exp
—i V(x, t')Bt

exp
—iHpBt

1'i

xexp
—iV(x, t')6't

!tc(x,t ), (16)

where t'=t+Bt/2. The second exponential from this ex-
pression containing the second derivative with respect to
x was evaluated in momentum space, using fast-
Fourier-transform techniques. The wave function was
confined in a box of size L =130 a.u. and 2048 space
steps were used. The size of the box was chosen so that
the wave function was rapidly decreasing well before the
edges of the box. The time step bt was equal to
0.001t, =8.41x10 ' sec. We calculated the popula-
tions P„(t) of all vibrational levels and the dissociation

HF: 8 =0.0419, D =6.125 eV, a =1.1741a ' d]
=0.786 Db/ao, ro=1.7329ao. The molecule was as-
sumed to be in its vibrational ground state (n =0) at
t =0. The transition dipole moment pp [ for HF was cal-
culated with the help of the following expression:

pol =d|(y!Ixl yo) =d 1(&/2) ' '/a =0.097 Db, (15)

where y„are Morse eigenfunctions. ' For these pa-
rameters the Morse potential supports 24 bound states
and its characteristic vibrational period is t, =2m/coo!
=8.41 x 100 sec, which is equal to the radiation cycle

~ ~

for t (tp.
The calculations were performed with the help of the

split-operator technique, ' ' in which the evolution of
the wave function over the time interval 8t is given by

The time evolution of the populations Po(t), Pi(t),
s(t), and P|4(t) and of the dissociation probability are

shown in Fig. 1(b) (1=10' W/cm ) and in Fi . 2(b)
(I —

1
12 2—0 W/cm ) for the pulses displayed in Figs. 1(a)

in ig.

and 2(a), respectively [for comparison, the dissociation
probability at the end of a pulse having no chirp, reso-
nant with coo i, but otherwise similar to that in Fig. 1(a),
is less than 10 ' ]. One sees clearly that the frequency
co(t), decreasing according to Eq. (13), constitutes the
"orce" driving populations upward much beyond the
N 8 level [the chirp from Fig. 1(a) stops at the fre-
quency corresponding to the transition from level 7 to 8]
yielding 50% dissociation. The fact that such a small
chirp is sufficient to give such efficient dissociation re-

l

suits from dynamic Stark shifts ' of higher vibration I

evels. Already for the 0~ 1 transition, the Rabi fre-
iona

quency exceeds the detuning 6 =28 D at an intensit of
/cm . This implies that for high intensities, our

predictions are insensitive to the asymptotic behavior of
the molecular potential.

The area S =So=1.5tr, chosen for the case shown in

Figs. 1(a) and 1(b), gives the largest probability, as seen
from Fig. 3. There are two reasons why S is greater
than n: (i) The larger area compensates the error intro-
duced by using a Taylor expansion for small values of n

in solving Eq. (10), and (ii) increasing the area compen-
sates for the less eScient population transfer with a con-
tinuously chirped pulse due to nonresonance eff'ects. Fig-
ure 3 also shows that greater than 25% dissociation is ob-
tained over a factor of 2 in pulse area (equivalent to a
factor of 4 in pulse intensity or a factor of 2 in chirp
rate . Although the concept of chirped-pulse dissocia-
tion requires that dissociation be sensitive to the phase
structure [co(t) =d@(t)//dt] of the pulse, the dynamic
Stark eff'ect ensures that there will be no practical
diSculty with pulse preparation.
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In order to obtain similar dissociation probabilities
[actually slightly smaller, Fig. 2(b)] for I =10''-W/cm,
we must choose diff'erent values of the area So and S and
continue the pulse chirp down to the transition frequency
mii i2. Such an intensity is well belo~ multiphoton-
ionization intensities.

%e have presented our results for the parameters of
HF in order to compare to previous calculations for dia-
tomic molecules. However, the parameters appropriate
to the excitation and dissociation of DCl are more acces-
sible to the current laser technology since its vibrational
frequency is close to the second harmonic of currently
available ultrashort-pulse COz lasers. The predictions
are qualitatively similar.

In conclusion, we have introduced a new method of
molecular control' in which only phase variation of the
pulse, not of its amplitude, determines the level of excita-
tion or dissociation. The control implicit in chirped-
pulse dissociation is very strong. This statement is intui-

tively clear if we consider two pulses which are identical
except for an opposite frequency chirp, i.e., co(t) being
an increasing function of time in the second pulse. Of
the two pulses, one will leave little or no excitation above
the first excited state, while the other, as we have shown,
can lead to at least 50% dissociation. It is important to
consider whether this approach can be applied to a

polyatomic molecule in view of exciting selectively a par-
ticular molecular bond. High intensities, I ) 10'
W/cm, are still necessary to achieve excitations faster
than a picosecond, which is the order of intramolecular
relaxation in polyatomic molecules. Chirping according
to Eq. (13) achieves this goal, so that single bond excita-
tion should be possible in polyatomic molecules, while

working at intensities below ionization thresholds.
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