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We propose a quantum description of color transparency in terms of light-cone operator matrix ele-

ments. The fundamental quantity needed is the distribution amplitude ts&(x, g ) for each hadron that
participates in the elastic scattering in the nuclear target. Two large scales, Q' and a mass scale going
like A ' ' for A)) 1, occur in a perturbatively consistent description. We find that the limit of large A

and moderate Q' may shed light on controversies over the applicability of perturbative QCD to exclusive

processes.

PACS numbers: 12.38.Bx, 12.38.Qk, 13.85.Dz, 25.40.Ve

Much of the intuition of the high-energy limit is semi-
classical, involving probabilities for partons to interact.
The formalism of perturbative QCD is quantum me-
chanical, of course, but the marvelous property of factor-
ization allows sets of diagrams to be organized into
initial- and final-state interactions. Then the parton
model follows for inclusive reactions. Factorization ap-
plies in a less direct way to exclusive reactions, where
scattering amplitudes rather than probabilities are cen-
tral. Semiclassical aspects are more or less anticipated,
as in the arguments for color transparency by Brodsky
and Mueller. ' In color transparency it is claimed that a
hadron undergoing a large-momentum-transfer elastic
collision should be geometrically small. Consequently,
the probability to interact with nuclear matter is small,
and attenuation should decrease as the momentum
transfer increases. The first data show evidence for
transparency, although the pp pp case turned out to
be subtle to compare the nuclear to free-space scatter-
ing. ' Various ways to implement the semiclassical ideas
have been introduced in Ref. 4. However, a quantum-
mechanical description has been lacking.

In this paper we outline a description of quantum
color transparency, or QCT. We put physical thinking
ahead of mathematical proof and present an educated
guess of what the quantum description should be. New
issues similar to the need to prove factorization come in.
Assuming such proofs could be made, experiments that
measure color transparency can be interpreted in terms
of certain well-defined matrix elements and not just as
nuclear physics phenomenology. A second result of this
paper is that the hadronic states probed by exclusive
data depend in an intricate way on two large scales, one
increasing with the size of the nucleus and the other be-
ing the momentum transfer Q . The size of the partici-
pating hadrons is small for two independent reasons.
The states measured in nuclear transparency experi-
ments are not ordinary hadrons, but new objects which
we call minihadrons. There is a nonperturbative aspect
to the nature of a minihadron due to the soft interactions
of stripping an ordinary hadron down to a miniature one.

By isolating the nonperturbative part and looking at the
general quantum description we have an indication of
how data should be analyzed.

In free-space exclusive processes the fundamental
object is the light-cone distribution amplitude (tp(x, Q )
of quarks in a participating hadron. The definition is

r Q
d'kT yp(x, kT ) .

(a) (b)

FIG. l. (a) General decomposition of the scattering in nu-
cleus A using a quark hard-scattering kernel H(x, g') and an
eA'ective multiquark wave function 6. (b) Factorized form
leading to Eq. (2).

yp(x, Q')- (I)

Here yp(x, kT) is the minimal Fock-space projection am-
plitude to find quarks with longitudinal momentum xP
and transverse momentum kT. For simplicity of notation
we assume one pair of quarks. The formalism for the
three-quark, proton case is a straightforward modi-
fication. The dependence on the large momentum scale
Q should be emphasized. &p(x, Q2) satisfies renor-
malization-group equations and thus has calculable evo-
lution at large Q, going roughly like ln'(Q /AQco).

For QCT the fundamental object is the analog of
pp(x, Q ) for each active hadron that has a hard scatter-
ing inside the nuclear medium. For definiteness consider
the pion knockout reaction zA z'n "2, where the nu-
cleus has nuclear number A. We are concerned with soft
elastic interactions of the quarks in the pions. At the end
of a chain of soft collisions there is a hard-scattering ker-
nel H(x;, Q ). This is shown in Fig. 1(a). The hard
scattering itself is perturbative, independent of the nu-
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clear number 2, and independent of the location of the
scattering inside the nucleus. In the sum over diagrams,
H(x;, Q ) will occur automatically at all allowed places
in the nucleus.

The reaction amplitude is thus the convolution of the
hard scattering and a big wave function G to find a num-
ber of quarks in a small scattering region. The integrals
for the amplitude M can be written as

Qdk, G(I, ,k, )H(k, ,g'),
I J

where k; are the active parton momenta and I, are loop
momenta related to interactions of the participating
quarks with spectators (not shown). But if the diagrams
can be separated into soft and collinear initial- and
final-state interactions by the momentum flow, then we
should be able to cut apart Fig. 1(a) to get Fig. 1(b). In
Fig. 1(b), the S blobs represent soft interactions which
have strong cancellations because the hadrons are color
singlets. The 2 blobs represent collinear jets along the
distinct directions of the active high-energy hadrons.

If such a factorization exists, and ignoring the soft in-

2'

+dk, H(k, , g )jr ' (k ) (k ) (k') (k") . (2)

This factorization represents the physical picture that
the impulse approximation can be applied to the hard
collision. This is not a general property of field theory
but a special feature of coherence in the gauge theory.

Computing Eq. (2) requires the nuclear light-cone dis-
tribution for the hadron that has interacted with the nu-

cleus, yg (x,g '):
r Q

yg(x, g') =~ d'kT yg(x, kT) . (3)

We would like to relate yp to y~. Consider the elastic
scattering of a quark on the nucleus. First, take a quark
beam with a wave function that is a plane wave in the z
direction, B(1 —x)b (kT). Let the scattering amplitude
for quark energy s and momentum transfer t in target 2
be Fz(s, t). If x comes in and x', kT goes out, then

t = (x/x') k—r.
For a wave packet given by amplitude yp(x, kT) com-

ing in, by superposition we have a scattered wave

teractions for the moment, then the scattering simplifies
to the form

X
y, (x', kT)=J dx d kTF~ s, —,(kT —kT) yp(x, kT2) .

As usual, we assume that there are no severe small-x
problems so that the x dependence is inessential. More-
over, since the x dependence of wave functions is not well
known and model dependent, we suppress it, letting F~
be proportional to 8(x —x') for this exposition. Going to
impact-parameter (b) space, with Fourier transforms in-
dicated by tildes, we have a transmitted wave y~ which
is the original wave minus the scattered wave,

yg(x, b) =fg(s, b)yp(x, b),
where f~ =1 F~ will be de—noted as the nuclear filtering
amplitude.

It is conventional to write f~ in terms of an eikonal
function g(b) as f(s,b) =1 —e'~' ). Our analysis is
general, and applies whatever the model for the scatter-
ing, but to focus the discussion we recall that in hadronic
physics g(s, b) typically goes like g(s, b) is'exp(-b'/—
2bp ). Expanding the eikonal to lowest order in g repro-
duces the naive Born-level picture, which is instructive:

lim f~(s,b) =s'e

Here the exponential in b represents the cutting off of
large-impact-parameter quarks beyond a scale bz. Evi-
dently b& is of order 8 '~ fm for large A, since we
could write

b t2b~ —z(a)/2x g
1

(b 2) b 2

no(b )
'

with n the average nuclear density seen in the problem

~g fO

d kT d bTe ' 'f~(s, b )yp(x, b)

=(2 )'g ", dbJ, (gb)f, (.,b')~(, b), (4)

yg(x, g') =

upon doing the integrals to find a Bessel function
J)(gb). The content of this formula is in its Q depen-
dence, which is entirely in the QJ)(gb) combination.
This just comes from Q in the upper kT limits, i.e., fac-
torization. The remaining content is in the A depen-
dence, entirely from the filtering amplitude f~. Even as-
suming the full f~ is complicated and model dependent,
we have the power-series expansion around b =0 of

f~(s, b ) =1 —A ' nb o' +

where b a,'g, by definition, is an eA'ective cross section.
We are assuming only that, at b =0, cancellation of the
color dipole moment of the singlet minihadron occurs, so
that f~(b =0) =1. [Actually, we do not have to limit
ourselves to a filtering amplitude that is analytic at b =0.
There is a negligible perturbative component to the
scattering that should go like a, (1/b ).]

The only physical input so far has been to propose fac-
torization and incorporate filtering in the nucleus. Nev-

and Z(A) =A 't, a distance scale in units of fermis.
The main effect of traveling through the nucleus

should be filtering, i.e., the cutting off of quarks separat-
ed by a large impact parameter. Let us examine the
general effect of this on p& (x,g ). We now have
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The large-A limit, like large Q, has the effect of cut-
ting off large impact parameters. We note that it has
been controversial whether or not such "soft physics" re-
gions contribute a significant amount to the data. It is a
general feature of QCD that the scale at which the per-
turbative treatment begins to work has to be determined
experimentally. Isgur and Llewellyn Smith, for exam-
ple, have argued vehemently that soft physics dominates
even the highest-energy data available. For this question
we return to the soft-exchange blobs we postponed dis-
cussing above. In general, infrared effects will be regu-
lated by the effective transverse size of the hadrons. The
effective infrared cutoff scales like the larger of the in-

coming hadron intrinsic kT, the scale Q, and the scale
from the nuclear filtering amplitude A' a,'s. For large
enough A the nuclear filtering wins. Thus, even if Q is

not large enough to guarantee a perturbative treatment,
moderate Q and large nuclear number A should provide
the infrared protection to justify the perturbative picture.
Evidence for this has already been found in the filtering
away of large-impact-parameter-independent scatter-
ings, as argued intuitively in Ref. 3. The consequences
of eliminating soft physics at large A are quite sig-
nificant.

There is a last loophole to be closed. Consider the
hadron that resides inside the nucleus before being
struck. For very large Q it will be small and there is no
problem. For moderate Q and very large A, however,
this hadron's wave function is not filtered by the A ' at-
tenuation and, in fact, should be independent of A. Thus
the argument seems to break down. However, in QCD
the struck hadron is protected by the smallness of the
other participating hadrons. It must be small to interact
with them. The struck-hadron distribution amplitude
pg(x, g ) remains rather different from the other ampli-
tudes in encoding different initial-state interactions. All
of the effects of interactions with the nucleus are con-
tained in p~ and p~ because of factorization. Fermi
motion of the nucleons, for example, is automatically in-
cluded in the complete pq.

An example illustrates several points. In our formula
(4) we insert a typical soft wave function

+ (b) mb-
For the nuclear effects we want a filtering amplitude that
is 1 at b=0 and has powers of b 2' a,'g. The integrals
are doable for

fg (b) =exp [—(b 'A '/'o, 'tr) '/'] .

ertheless, transparency is so general that this is all we

need to assume. The point is that even though f~ has a
filtering effect with a large cross section, say, o.,'z-1
fm, at large enough Q the integral in (4) is independent
of A; in fact, it gives the free-space value

lim y~(x, g2) =yp(x, g2).
g~ ao

This comes about because the integral as Q ~ over
the Bessel function Jl(gb) only requires the value of
yg(x, b) as b 0.

To show this quantitatively we develop an asymptotic
series in large Q from (4). It is not safe to expand
yg(x, b ) around b =0 (a possible method) because this
region is renormalization-group determined to diverge
like powers of ln(b AQcD). We use a Mellin transform
which is systematic. Let

gg /v ( g)—0~,w(x) =„,
~ r(I —N/2)

r(I+N/2)
using (4). Here ii/~ /v is the impact-parameter moment

(s)

8 OO

yp(b) [1 —b 2A '/3n(y'g+ )Y~,jv(x) =„
Note that the N 0 behavior is fixed by the free-space
wave function Pp(b). Here the effect of interaction with
the nucleus is a factor "1." The 3' 0,'g dependence
affects the N —2 behavior, and is thus suppressed by
1/Q . This is transparency. It is remarkably general in

the asymptotic limit Q
The expansion in powers of A '/ and 1/Q is tricky. It

can be clarified by the physical picture that as Q
with fixed A, the active minihadrons get smaller and
smaller and attenuation is turned off. That has been
shown above. However, for fixed large Q, one could al-

ways take A ~, a huge nucleus, and there should be
filtering and attenuation for large enough A. So the
large-A and large-Q limits cannot be uniform. Both are
good perturbative limits, nonetheless. Now, letting y~ (b) = Pl(b)f~ (b), we evaluate (4) to ob-

tain

P'~, /v =„b ii/~ (»b) .
db

Note the b moments are defined with the negative N—
of the Q moments; this is because powers of b will turn
out to map into powers of 1/Q (modulo logarithms).

Inverting p/v, complex N-plane singularities at N=O
are leading twist; those at N= —2 give 1/g higher
twist, and so on. The wave function fr~(b) determines
the N =0 singularity:

m+ (A '/3o,'tr) '"
[ + (A 1/3 & ) 1/2] 2 +g 2

1—
( 2+g2) 1/2

Here we see the following explicitly: as g ))A '/ a,'p., pz(Q2) pp(g ). This is general. As g is fixed, but
A 0 ff ))Q, the very large nucleus limit, there is nevertheless attenuation.
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The factor T(Q, A) multiplying po(Q ) in (6) can
serve as a crude representation of the effects of QCT.
Roughly speaking we have one factor of T(Q, A) for
each hadron that must cross the nucleus in the scatter-
ing. The real situation is more complicated, involving in-

tegrations over the x dependence of the hard scattering
and the wave functions. In Fig. 2 we plot T(Q, A) vs Q
and A. The plots are not to be compared directly with

the data, but to show that everything is in accord with

the physical arguments. The plots show the same
features as the semiclassical model of Ref. 4 in which the
idea of transparency has been imposed by hand.

We now turn to the problem of analyzing the data.
For definiteness suppose a given electromagnetic form
factor of the proton inside a nuclear target FA (Q ) has
been measured in ee'p reactions. A natural measure of
transParency is the ratio FA (Q )/Fo(Q ), where Fo(Q )
is the free-space case. This ratio can be studied from a
lower limit Qo- I GeV to the upper values measured. A
fit by the ratio in powers of ln(Q /AgcD) and powers of
Qo/Q is good for relating data to the minihadron nu-

clear distribution amplitudes. That is,

FA(Q') ln (Q'/A')
(Q2) ~ J (Q2/Q2) M

has the form that is good to compare to theory. The
form is good because it arises naturally from Q moments.
Depending on models of the x dependence, theory can
relate the small-impact-parameter behavior of ttrA(b) to
the first few coefficients Cst J. Conversely, experiments
measuring Cst J can give information on the filtered
wave functions and tell us the filtering cross section. The
process of relating Cst J to an expansion of yA(b)
around b =0 is somewhat involved and need not be
presented here. Conceptually, we separate the model-
dependent details of predicting fA(s, b) and &A(x, Q )
from their use in the perturbative formalism of QCT.

In conclusion, we have shown how color transparency
can be obtained with very general quantum-mechanical
assumptions. The fundamental object is &A(x, Q ), the
nuclear light-cone distribution amplitude. An explicit
formula relates pA (x,Q ) to the free-space po(x, Q ).
We anticipate that, with models of the x dependence, the

Q dependence of &A(x, Q ) can be related to the data.
Thus this fundamental object will be measured by up-
coming experiments.

We have emphasized the interplay of large nuclear
number A and large Q . By studying exclusive processes
at large A, long-standing controversies over the applica-
bility of perturbative QCD may be approached from a
new point of view.
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FIG. 2. Model QCT transparency factor T(Q,A) relating

the nuclear light-cone distribution to the free-space one 1Eq.

(6)l with parameter m 0.3 GeV. (a) At fixed 2, transparen-

cy increases with increasing Q; 8 =12 (200) for the upper

(lower) curve. (b) At fixed Q', transparency decreases with

increasing A; Q' 2 (20) GeV' for the lower (upper) curve.
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