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A new mechanism through which a net baryon asymmetry could be generated at the electroweak
phase transition is discussed. It works efficiently in "nonminimal" extensions of the standard model such
as occur in supersymmetric theories, where the Higgs sector involves several fields. In these theories it
appears capable of producing the observed asymmetry. Conversely, with more detailed calculations this
mechanism could be used to put important constraints on nonminimal extensions of the standard model.
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One of the most basic observational facts in cosmology
is the apparent predominance of matter over antimatter
in the Universe. The baryon-to-photon ratio is required
to be of order 10 in order for nucleosynthesis to pro-
duce the observed abundances of the light elements.
Within the standard hot-big-bang theory there is no ex-
planation for this small number: it is simply a required
initial condition. In 1967 Sakharov proposed a simpler
alternative, that the Universe began in a baryon-
symmetric state but that particle interactions produced a
net asymmetry. He pointed out that in addition to
baryon-number violation this requires both CP violation
and departure from thermal equilibrium. These condi-
tions were met in many grand unified theories (GUT),
and this was rightly regarded as a major success. How-

ever, more recent work including numerical simula-
tions has established that baryon-number-violating pro-
cesses occur rapidly in the electroweak theory at temper-
atures above the weak scale, and may in some cases in-

terfere with any GUT-produced asymmetry.
The scenario we propose is instead based on far more

conservative extensions of the standard model, which

only have a slightly larger Higgs sector. Such "non-
minimal" extensions occur in supersymmetric versions of
the standard model which aim to explain the gauge
hierarchy. For an alternate scenario, see Ref. 5.

The possibility that baryon-number violation in the
electroweak theory could lead to the observed baryon
asymmetry has been previously discussed by Shaposhni-
kov and McLerran. While our scenario has some as-
pects in common with theirs (in particular, with one of
Shaposhnikov's suggestions), our discussion of the mech-
anism is we feel clearer and more specific. The mecha-
nism relies simply on the classical dynamics of the gauge
and Higgs fields at the electroweak transition, when CP-
violating eff'ects from "integrating out" the fermions are
included. We assume that the electroweak phase transi-
tion is at least weakly first order, as is reasonably generic
in theories with several Higgs fields. ' If tunneling rates
are small, there is supercooling until the curvature of the
potential becomes negative at the origin. This produces
a departure from thermal equilibrium, and the transition
proceeds by "spinodal decomposition, " as the Higgs field
rolls down the potential to the true vacuum. Our mecha-
nism works during this brief rolling period. The gauge-
Higgs system possesses a gauge-invariant winding num-

ber BN which we define below. This fluctuates by an
amount of order unity per correlation volume. As the
system relaxes toward the vacuum (in which BN=O), it
can do so in two inequivalent ways. Either the Higgs
field changes winding number or the gauge field does. In
the latter case baryons are produced via the axial anom-
aly. We shall show that CP-violating terms in the equa-
tions of motion favor a change in the gauge-field winding
number if SN has one sign, and a change in the Higgs-
field winding number if bN has the other sign. The
gauge-field winding changes more often in one direction,
and a net baryon asymmetry is produced.

For the mechanism to work, we need to ensure that
thermal sphaleron production after the phase transition
does not wash out any baryons we generate. This re-
quirement places an upper bound on the Higgs mass(es).
Shaposhnikov and, more recently, Bochkarev, Kuzmin,
and Shaposhnikov, have calculated this bound for both
the standard model and the theory with two doublets,
and it is compatible with current experimental limits
(more easily so in the two-doublet case we are interested
in).

Most discussions so far have focused on the gauge-
field winding number, the Chem-Simons number Ncs.
There is, however, another important winding number in

the problem, the Higgs-field winding number NH

2Ncs=, „d'x&""Tr(Fi~&a+ i tg&;&,&t, ),

NH = —
~ d xe'J"Tr(8;@ 8,@8 @ @),

where At, At', o'/2 and F;~=FvcJ'/2 are the SU(2)
gauge field and field strength, and @ is a unitary ma-
trix made from the standard doublet Higgs field
&=& I +i& o, with the real unit four-vector p' given
by e = lel (i '+to, i ' ti ')—

N&z plays the central role in baryon-number violation:
If it changes, the number of baryons N& changes accord-
ingly, through the axial anomaly, '

gN, =3' s, (2)

where the factor 3 comes from the number of families. ' '

Nps is not a very good measure of winding number —it
is only necessarily an integer if 2, is everywhere pure
gauge; i.e., in the gauge-field vacuum, it is not gauge in-

variant, changing by an integer under "big" gauge trans-
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formations. NH is in contrast an integer whenever it is

defined, i.e., when p does not vanish anywhere in the in-

tegration region, as is nearly always the case, but is also
not invariant under big gauge transformations. Howev-

er, the difference
BN=—Nps —NH (3)

is completely gauge invariant, and is therefore a good
measure of nontrivial topology in excited configurations.
In fact, BN is expressible as the integral of a local
gauge-invariant density, the so-called Goldstone-Wilczek
density. ' In vacuo, zero energy density requires
(&+igA)&=0, which forces Ncs=NH—=N and thus
BN =0.

Our discussion will focus on configurations where 8N
is initially nonzero. Such configurations occur in abun-
dance near the electroweak transition and relax toward
bN 0 as their energy dissipates. During this process
the changes hNcs and hNH are also gauge invariant.
The basic idea behind our mechanism is that if the dy-
namics of the gauge and Higgs fields violates CP, posi-
tive BN and negative bN regions evolve differently: so
that for one sign the vacuum will be attained through
NH changing, whereas for other sign the vacuum will be
attained through Ncs changing. For equal initial num-

bers of positive and negative BN regions, N~s will tend
to move in one direction, producing a net baryon num-

ber.
Ignoring the gauge fields, the electroweak scalar sector

is actually the simplest example of a theory with "global
texture, "' since the vacuum is simply a three-sphere,
As was argued in Ref. 13, after the symmetry-breaking
transition, the Higgs field falls toward the vacuum, but
in such a way as to wind around the three-sphere of or-
der once per correlation volume. Winding configurations
collapse and unwind. This process continues, the corre-
lation length growing at the speed of light in the pro-
cess. '

In a gauge theory, the behavior of texture is more sub-
tle. The gauge fields can cancel gradient energy in the

Higgs field, "eating" the Goldstone modes. This com-
petes with the tendency of the Higgs field to unwind,

leading to a "bifurcation" in behavior at a critical scale
Lz. As an example, consider the spherically symmetric
configuration P g(x)pp, pp=(0, rl), and A„=O, with

g(x) a gauge group element with winding number unity:
g(x) =e '~ ' " ~", with g(0) =0 and g(~) =x. This has
AN= —1, and by the gauge transformation g '(x) is

equivalent to a configuration with Ncs = —
1 and

NH =0. We evolved this configuration numerically with
the full classical equations of motion (details will be
given in Ref. 15)

(D F"")'= i (p cr'D'—p —H.c.),
2

(4)
D„D"p= —V'(p), V(p) =—(p p

—
rl )

and the general spherically symmetric ansatz for the

fields,

s+ 6'"t +e"j u,
(5)x-a

Ap= w, y= p+iv tlap,
r

where s, t, u, w, p, and v are functions of r and t only,
and Pp

= (0, rl) a constant. As usual, we rescale coordi-
nates by x'" =x"/g to remove the dependence on the
gauge coupling constant. The only scales in the equa-
tions are now the gauge boson mass mii = (I/J2)gil, and
mH= J2krl. We use Lorentz gauge, r)„A"'=0, which
determines the evolution of w. We choose as initial con-
ditions g(r) =irtanh(r/L), with L a scale determining
the "size" of the initial winding configuration.

A simplification occurs if we take k =~: The Higgs
evolution equation (4) becomes the "gauged nonlinear cr

model" equation

(D„)'D"
D„D"y = (6)

which is solved for all time in Lorentz gauge by p=pp.
So we perform a big gauge transformation using g '(x)
to make p constant, and then have only the massive-
gauge-boson equations to evolve. The only length scale
in this case is mii '. For L )mii

' the field configuration
oscillates and slowly spreads out, as one would expect
for a cloud of massive gauge bosons. However, for
L & mii ', a collapse occurs, just as in the global texture
case.

If k is large but finite, a singularity does not occur.
Instead, when the size of the configuration is smaller
than m H, the gradient term in the Higgs-field equation
becomes large, and pulls the Higgs field over the poten-
tial barrier. So if L (mii ', the Higgs field changes
winding number to match Ncs, whereas if L & mii ', the
gauge field changes winding number to match NH. This
is consistent with the sphaleron picture. To change the
value of Ncs by one unit, one has to have at least the en-

ergy of a sphaleron, which is between 1.5 and 2.7 times
4rr J2rl/g for X between 0 and ~. The energy in our ini-
tial configuration is = 3.7 x 4xg L, so for L & m~ ' there
is not enough energy to carry the gauge fields over the
sphaleron barrier, while for L & m~' there is enough.
The process finally occurs through the gauge fields relax-
ing to cancel gradient energy in the Higgs field. We
have calculated the bifurcation scale Lq for general A, ,
and display the results in Fig. l. As the Higgs self-

coupling gets smaller the bifurcation scale gets larger.
During the transition configurations of varying scales

L will be produced with both positive and negative 6N.
With the above CP-invariant classical equations, Ncs
changes as frequently in the positive direction as in the
negative direction. What we require to favor a particu-
lar sign of Ncq is a dynamics which violates CP. The
terms lowest in derivatives that can occur in the effective
action for the gauge and Higgs fields once the fermions
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are integrated out are, at temperature T,

iL= — d4X —,
' [f(&,T)8ob+g(P T)~ ]Fa,F &»~~ (7

where f(p, T) is a dimensionless SU(2) scalar construct-
ed from the Higgs fields present in the theory and

aha
g (p, T) a traceless symmetric tensor. Such terms ap-

pear even in the minimal electroweak theory, but are
very tiny, of order 10, due to Glashow-Iliopoulos-
Maiani cancellation. However, in nonminimal models,
with CP violation in the Higgs sector, there is no reason
for them to be small. For example, in the simplest two-

doublet model with the soft CP-breaking 4~~42 —H.c.
term in the potential' and the "minimally nonminimal"

model described by Ellis et al. , f is proportional to g 8,
where 8 is the phase of 4i tIi2. As the Higgs fields roll, 8
evolves as a consequence of CP-violating phases in the

potential. In fact, all that will matter here will be that15

f changes in a particular direction as the Higgs fields roll

towards the vacuum. The sign of the time derivative off
determines the sign of the baryon number produced, and

we shall henceforth assume it is positive.
Since (7) violates parity, positive and negative winding

configurations evolve differently. Its effect is most sim-

ply seen if one considers spatially homogeneous p con-

figurations. After performing the spatial integral and in-

tegrating by parts in time, one finds (7) is equivalent to
fO

hL —,
' dr Ncs, (g)

I

which is simply a linear potential for Ncs. During the

phase transition, when df/dt is positive, (7) provides a
force term driving %cs positive.

Ignoring spatial gradients in f, the gauge-field equa-
tions become

D„F"'=(grIB' i —(p a'D'p —H.c.),
2

'' '
gg dt

Equation (9) has been investigated numerically by
Grigoriev, Rubakov, and Shaposhnikov' for the 1+1
Abelian Higgs model, and by Ambjorn and co-

3, 18workers in the course of investigating whether a
Chem-Simons condensate could develop in the elec-
troweak theory at high temperatures —the extra term
was added as a source, to probe the response of the sys-
tem (this issue is still unresolved, but we assume there is
no condensate in our work). In our case it is present in-

trinsically in the classical dynamics of the theory
We have evolved Eqs. (4) numerically with the addi-

tion of the extra parity-violating term in (9). We treated

g as a constant for these purposes, ignoring the "backre-
action" on the rolling of the Higgs field. This is reason-
able for small g, but we intend to evolve the full equa-
tions in forthcoming work. ' A typical example is shown
in Fig. 2, for A, 1000. For g equal to zero (dashed
lines) the configuration collapses, leading to an unwind-

ing of the Higgs field. The collapse is even faster if ( is
negative. But for g positive (solid lines), the con-
figuration "bounces, " and the Higgs field does not
change winding number. Therefore Ncs must change.
In this case, exactly three baryons are produced. Of
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FIG. 1. The bifurcation scale La between collapse and re-
laxation for spherical configurations with BR=1, as described
in the text. It is plotted against the Higgs self-coupling i,/g':
For scales to the left of the line the Higgs field unwinds, but
for scales to the right of the line the gauge fields wind up.
Length units are such that gg 1.

r
FIG. 2. The function s, defined in (5), plotted vs radius for

several times, starting at an early time tl, and ending at t3.
The dashed lines show the evolution for /=0, where the
configuration collapses, causing the Higgs field to unwind. The
solid lines show the evolution for (=0.2, where the gauge-field
configuration "bounces, " and the Higgs field does not unwind.

2333



VOLUME 65, NUMBER 19 PHYSICAL REVIEW LETTERS 5 NOVEMBER 1990

0—

t i i 6 = + g, a net baryon number is produced. Thus a frac-
tion of order ( correlation volumes will produce baryons.
Since there is roughly one photon per correlation volume,
the final baryon-to-photon ratio is simply of order g. It
is clear that it is easy to obtain an asymmetry of the re-
quired magnitude for reasonable couplings, and a prelim-
inary survey of the existing constraints on flavor-
changing neutral-Higgs exchange indicates these are not
a problem, ' for the rather small values of ( that we re-
quire.
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FIG. 3. The bifurcation scale Ls plotted as a function of (.
As in Fig. 1, for scales to the left of the line the Higgs field

unwinds, but for scales to the right the gauge field winds up.

In any theory g is fixed, but the opposite sign of g describes

configurations of opposite winding number 8N. The asym-

metry on this diagram between positive and negative ( results

in a net asymmetry in the change in N&s during the phase

transition and therefore a net baryon number.

course, changing the sign of g is exactly the same as con-

sidering a configuration of the opposite winding number,

so we have shown that in this case Ncs would increase
more often than decrease. The dependence of the bifur-

cation scale Lg on the value of g is shown in Fig. 3. The
important region is near (=0, where the dependence is

clearly linear, and the slope of order unity. The results

are shown for large X=1000. We also calculated the

slope for )I, = I and again found it to be of order unity. 's

This means that in the "realistic" case, where ( is a

small number, we would expect the diA'erence between

collapse and expansion to be seen for configurations

whose scale was within +'(LIt of the bifurcation scale

La. So for small ( only a small fraction of winding

configurations would behave differently for positive and

negative Nps.
It is clear that for small ( the net baryon-to-photon ra-

tio is linear in g, and in fact of order g for coupling con-

stants of order unity. There is some probability per

correlation volume of having a winding configuration of
scale L. This probability distribution, being thermal in

origin, will not be sharply peaked, and will be largest
around the inverse weak scale m~'. The probability
that L lies within BLED of the "bifurcation scale, "
L~ =m~, is then of order 6 since the probability func-

tion is of order unity there. As we have seen, for
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