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1 1=—'exp(2iQt) . +exp( —2i01) . '. (1)2, I

E is the superposition of two oppositely frequency-
shifted circular polarizations, equivalent to a rotating
linear polarization. The intensity detected through a po-
larizer in experiment 1 (see Fig. 1) exhibits then a
modulation at angular frequency 40 [see Figs. 2(a) and
2(b)]. These results are the same as those of Ref. 1

though our frequency shifts are twice as large because
we kept both circular components. One must notice that
such frequency shifts have already been observed in mi-
crowave experiments and many years ago in optics and
agree with a classical Jones matrix calculation.

However, a deeper interpretation of this phenomenon
can be given thanks to energy conservation. The incident
beam contains No+ photons with angular momentum h
and Ncr photons with angular momentum —h. When
the half-wave plate is turned with the torque of the wave,
the wave produces work and loses a part of its energy,
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FIG. 1. Experimental setups.

Energy Exchanges between a Rotating Retardation
Plate and a Laser Beam

A frequency shift of a laser beam due to its interaction
with a rotating quarter-wave plate has been reported by
Simon, Kimble, and Sudarshan. ' This shift was then
claimed to be new and interpreted as a dynamical mani-
festation of Berry's phase shift. %e wish to point out the
fact that such frequency shifts are well known and can
be interpreted as energy exchanges. Indeed, since Beth,
it has been shown that a circularly polarized light exerts
a torque on a retardation plate, as predicted by Poynting
and Kastler. Consequently, when such a plate rotates,
it exchanges work with the light, as more easily shown in
microwave experiments. In the experiment of Ref. 1,
the light passes twice through a rotating quarter-wave
plate, that is equivalent to a single half-wave plate. Con-
sequently, we send a linearly polarized beam from a
monomode 3.39-pm laser onto a rotating half-wave plate
(see Fig. 1). The Jones vector of the light emerging
from this plate is
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FIG. 2. (a) Typical observed modulation at angular fre-
quency 4&. (b) Frequency shift vs mechanical rotation rate

(c) Typical signal obtained from a spectrum analyzer in
the case of the optical beating experiment 3.

and vice versa. The calculation of the energy exchanges
during this process leads to

—,
' J0 +N h ru+ N h ro = —,

' J0 +N h (cu —2 0 )
+Nh(ro+20), (2)

where J is the moment of inertia of the plate, showing
that the half-wave plate transfers some energy from one
beam to the other. This energy exchange is still more
strikingly proved by experiments 2 and 3. In experiment
2, a quarter-wave plate changes the two frequency-
shifted circular waves into two orthogonal linear waves
that are spatially separated by a rutile birefringent crys-
tal. Both ordinary and extraordinary beams separately
exhibit no more modulation Howeve. r, their frequencies
are shifted, as shown by their mixing with a second crys-
tal that exhibits an optical beating at angular frequency
40 [see experiment 3 in Figs. 1 and 2(c)].

This series of simple experiments has shown that the
unavoidable frequency shift of a circularly polarized
beam incident on a rotating birefringent plate is a simple
consequence of the energy-conservation law and is asso-
ciated with an angular momentum exchange. Moreover,
this consequence of the energy-conservation law throws
light on many papers dealing with the manifestation of
Berry's phase shift in optics.
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