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Correlation Functions in the One-Dimensional t-J Model
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The critical exponents for the charge, spin, electron, and superconducting correlation functions of the
one-dimensional t-J model at t =J are obtained for arbitrary band filling. Our method is based on the
Bethe-ansatz solution and the finite-size scaling analysis in conformal field theory. The long-distance be-
havior of the model belongs to the same universality class as the repulsive Hubbard model. Near half
filling the exponents take the values expected in the strong-correlation limit of the Hubbard model. In
the low-density limit the exponents are those of the noninteracting system.

PACS numbers: 71.30.+h, 74.65.+n

There has been considerable interest in the t Jmod-el
since its relation with high-T, superconductivity was
pointed out. ' In one dimension (1D), the model with
t =J is exactly solved by the Bethe-ansatz method. ' In
this paper, based on the Bethe-ansatz equations, we shall
obtain the critical exponents of various correlation func-
tions in the 1D t Jmode-l at t =J for arbitrary band
filling. The exponents are calculated by using the finite-
size scaling technique in conformal field theory. Our
results show explicitly that the model is characterized as
the Luttinger liquid a la Haldane and its fixed point is

of the Tomonaga-Luttinger type. The same conclusion
has been drawn for the repulsive Hubbard model quite
recently in both analytic " and numerical ' ' ap-
proaches. This does not necessarily mean that both mod-
els have the same exponents. In fact, we will see that go-
ing toward the band bottom the dependences of the ex-
ponents on hole doping become considerably diff'erent

from each other.
The Hamiltonian of the 1D t-J model is given by'

"P = —t g c;~& +Jg(S, SI —-„' n;nl ),
((j),o (ij )

with an antiferromagnetic coupling J & 0 and where (ij )
denotes a nearest-neighbor pair of lattice sites. The
model assumes that there is not double occupancy of
every site. For the special case of I =J, the Hamiltonian
is diagonalized by the Bethe ansatz. The Bethe-Yang
transcendental equations are written in terms of the ra-
pidities k, and A, (Refs. 2 and 3),

M

F(k, ) '= + F(k —A ), =1, . . . , N,
P=l

JV M

+ F(A. —k, ) = —+ F((A. —A, )/2),

where F(x) =(x+i/2)/(x —t /2) and M'is the number
of down-spin electrons among the total of % electrons on
the 1D lattice with even number of sites, N, . The rapidi-
ty distribution of the ground state consists of real k,- of
unpaired electrons (j=l, . . . , N —2M) and complex

Eo- soN, —ttv, /6N, —ttv, /6N, , (3)

where cp is the bulk energy density, and t. , and v, are the
velocities of the charge and spin excitations (holon and
spinon), both of which are massless away from half
filling. There exist several kinds of excited states which
are relevant for determining the energy gaps of order
1/N, For the sake of .illustration let us consider the
charge degrees of freedom. In the excited states the hole
distribution is asymmetric, Q & A & Q+, while in the
ground state it is symmetric about the origin, —

Q & A

k.—of spin-paired electrons (a=1, . . . , M), where k,—
are related to real (down-) spin rapidities A, through
k,—=A, ~ i/2. In the thermodynamic limit the rapidi-
ties k and A are distributed over the range ~k ~

& 8 and

~A~ & Q, where 8 and Q are determined from the elec-
tron concentration and the magnetization. Henceforth
we will set t =J=1 for convenience.

For the excited states the "Fermi levels" of the rapidi-
ty distributions become asymmetric, say, k &8 and
k )8+, A & Q and A) Q+. In order to compute the
finite-size corrections, however, we find it more con-
venient to rewrite the equations for the rapidity distribu-
tions so that the integration regions fall into the interval
8 & k & 8+ and Q & A & Q+. This can be easily
done by Fourier transformation. The integrations of the
k and A distribution functions over these closed intervals
yield 1

—(N —M)/N, and 1
—N/N„respectively Ac-.

cordingly, we count the excited modes in terms of up-
spin and hole degrees of freedom instead of down spins
and electrons themselves when we deal with the excita-
tions in this representation.

After these manipulations the finite-size contributions
in the energy spectrum away from half filling are
verified. We follow the method adopted in the mul-
ticomponent spin models ' and also in the Hubbard mod-
el. ' Here we only present our results and the details
will be reported elsewhere. '

The correction to the ground-state energy Eo turns out
to be
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E Ep —(2n'v /N )x +(2nv /N )x, ,
2

&-I.—4csI.
2detg

+ ((„D,+ g„D, ) +N,++N,

2

(5)

(6)
4-I.—

&c.I.
2det(

+(g„D,+(„D,) +N, +N,

P —Pp = (2z —2kF t
—2k F1)D, + (2z —2kF i )D,

+ g (ID+N,+ N, ), —
Ng a cs

(7)

where the elements of the 2x 2 matrix ( are given by

(,p(qp). Note that the effect of the magnetic field has

been included in the results.
It is clearly seen from (3)-(7) that the charge and

spin degrees of freedom are separated in the continuum

limit, each of which is described by c =1 conformal field

theory. According to the finite-size scaling theory we

can now read off all the critical exponents from (6), as

has been done for the Hubbard model. ' We should

point out that the allowed sets of quantum numbers

(I„,I„D„D,) are subjected to the constraints D,
=(I,+I, )/2 (modl) and D, =I,/2 (modl), which can
be checked by taking the logarithm of (2). This condi-
tion is crucial to identify the critical exponent for a given

operator. One may notice that our results look analo-

gous to those for the Hubbard model. ' ' We stress,
however, that physical interpretation of the quantum
numbers is somewhat diferent as we have already ex-

(Q. The energy difterence N, (Q —+ Q) turns out to
be of order 1/N„and hence gives rise to the energy gap
E —Ep~ 1/N, . We have the contribution of the change
of hole number from the ground state, which is denoted
by I, (integer). The change D, due to the particle
transfer from one Fermi level of the holons to the other
also participates. Notice that this process carries the
momentum (2n —2kF1 —2kFi)D„where kF1 (kFi) is the
Fermi momentum for the up- (down-) spin electrons.
Furthermore these excitations may be accompanied by
the low-energy particle-hole excitations with small
momentum transfer near the right (+) and left (—) Fer-
mi levels, which are specified by a set of non-negative in-

tegers N,—. The spin excitations are classified in the
same way, and we use the corresponding notations I„D„
and N, —. When computing the gaps associated with

these excitations we are naturally led to introduce the
2x2 dressed charge matrix' ' whose elements are given

by the solutions to the integral equations (a,P =c,s)

dX„'
&.p(~p) =b.p+ Z „"&.,(&„')K,p(&,

' —Xp), (4)q„2 &l'

where X, =A, &, =k and q, =Q, q, =8. The kernels are
defined by K„(x)= —2(x 2+ 1) ', K„(x)=K„(x)
=(x + 4 ) ', and K„,(x) =0. The energy E and

momentum P of the excited states now take the form

plained.
Let us restrict ourselves to the case of zero magnetic

field. Since B ~ for zero field the dressed charge ma-

trix is reduced to a simple form g„.=((Q), („,=0,
(,„=g(Q)/2, and g, , =I/J2, where ((A) is obtained
from

~g
((A) =1+ G(A —A')((A'),~-0 2~

and G(x) =f daiexp( —iaix)[I +exp(icoi)] '. It is

now understood from (6) that the spin sector is described

by the level-1 SU(2) Kac-Moody theory and the charge
sector by free boson theory with field periodicity
JzR =g(Q) '. " Hence the holon dressed charge g(Q)
fixes the parametrization when we bosonize the charge
sector. ' In this sense the spin sector is also mapped
onto the free boson theory at periodicity v%R =g„
= I/K2, which corresponds to the SU(2) symmetry point
on the c =1 critical line.

We first consider the charge-density correlation func-

tion. The asymptotic form of the equal-time correlator
can be written as (neglecting logarithmic corrections)

(n (r) n (0))—const+ A pr

+A2r 'cos(2kfr)+A4r "cos(4kFr),

(9)

where n(r) is the density operator at lattice site r and

kFt =kFi—=kF for zero field. Since the operator n(r)
changes neither the electron number nor the total spin
we can set I„=I,=0. It is seen from (6) and (7) that
the 4kF piece is determined by the excitation of
(D„D,) = ( ~ 1,0), whereas the 2kF piece by (D„D,)
=(+ 1, -i 1). The nonoscillating part arises from the
lowest particle-hole excitation. We thus find

a„=2((Q), a, =1+a,/4. One observes that both holon
and spinon excitations participate in the 2kF oscillation
part. On the other hand, the 4kF piece is dominated by
the holon excitation alone, as was seen for the Hubbard
model ' and the Tomonaga-Luttinger model. The
spin-correlation function (S,(r)S, (0)) takes the same
form as (9) except that the 4kF part is absent. The criti-
cal exponent for the 2kF part is equal to a, of the density
correlation. The exponent a, is depicted in Fig. 1, where
the dressed charge of the holon, g(Q), takes the value1(g(Q) ( J2 for the electron concentration —,

' )v) 0
(v= —, at half filling). Near half filling it behaves as
a„-2+ 8 ( —,

' —v). In the low-density limit we have

a, =4, i.e. , the value for the noninteracting model. This
result makes a striking contrast to the U ~ Hubbard
model, where a, =2 irrespective of v. ' ' '

The long-distance behavior of the electron correlation
function (ci(r)ci(0))-r "cos(kFr) determines the ex-
ponent 0= g

—
1 of the momentum distribution function

close to kF, (ni, &=(nq.,) —const x ik —
kryo sgn(k —kF).

Since the corresponding excitation is specified by
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FIG. 1. The exponent a, as a function of the electron con-
centration v (v= —,

' for half filling). For comparison the 4k'
exponent in the Hubbard model is also plotted as dashed lines:
(1) U/t =2 and (2) U/t 8 (Ref. 9). Note that a, =2 for any
v in the U ~ Hubbard model (Refs. 12, 13, and 19).

(I„I„D„,D, ) =(1,1,0, ~ —,
' ), we obtain 0=(a, —4) /

16a,. %e observe that 0 depends strongly on the elec-
tron concentration v: 8 decreases monotonically from 8

to zero as v decreases from half filling, and hence the
momentum distribution varies abruptly around kF in the
low-density regime. It is interesting to compare with the
U ~ limit of the Hubbard model, where 9= —,

' for any
filling.

Turning to the superconducting correlation functions
we discuss the singlet and triplet pair correlations. Since
double occupancy of every site is forbidden we take an
intersite pair of up- and down-spin electrons for the sing-
let. As for the triplet an intersite pair of parallel up-spin
electrons is considered. The excitations relevant for the
singlet and triplet pair correlations are specified by
(I„I„D„D,) = (2, 1, ~ &,0) and (2,2,0,0), respectively.
%e then obtain the 2kF oscillation piece with exponent
P, =4/a, +a, /4 for the singlet pair. The triplet pair has
the leading uniform term with exponent P, =1+4/a, .
Note that the singlet pair correlation also has the uni-
form term with the same exponent P, . We see that P,
decreases from 3 to 2 as v deviates from half filling.
Hence doping holes into the half-filled band enhances the
superconducting correlation. The enhancement in the t-
J model is rather conspicuous due to the large spin-
exchange interaction, while it is small in the strong-
correlation limit of the Hubbard model. It is also in-
teresting to observe that even in the t-J model with large
J ( = t ) the spin correlation dominates the superconduct-
ing correlations for arbitrary electron filling since P, and

P, are always larger than a, .
These critical exponents can be expressed in terms of

the bulk quantities. For the specific-heat coefficient y
the low-temperature expansion of the free energy gives

y =a(l/v, +1/t, )/3, which corresponds to two c =1 con-
formal theories. The compressibility and the spin sus-
ceptibility are obtained as g, =((Q) /xv, and g,
=(gpss) („/zv, with („=1/J2. We thus find a, =4/, /
(2y —g, ), where the tilde means the corresponding
quantities normalized so that y =@,=g, =1 in the nonin-

teracting case. Approaching half filling g, remains finite
(a constant of the Heisenberg model), while g, diverges
as ( —,

' —v) ' due to the diverging density of states.
Since y is also divergent as ( —,

' —v) ', we have
a, 2g, /y for v

The scaling relations among a„a„O, and P, are those
characteristic of the Tomonaga-Luttinger model. '
Therefore we conclude that the t Jm-odel (r =J), as well
as the repulsive Hubbard model, ' has the fixed point
of Luttinger liquids. Upon comparing with the large-U
behavior of the Hubbard model, however, we immediate-
ly notice the considerably different v dependence of the
critical exponents in the low-density regime. For in-
stance a, (=4) takes the value for the noninteracting
system as v 0. This may sound a bit peculiar since the
t Jmo-del is supposed to be a strongly correlated system.
The result implies that the hole motion in the r Jmo-del
is not like spinless fermions but is affected considerably
by the spin fluctuation through the strong antiferromag-
netic coupling J.
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