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In a recent Letter we argued that the existence of an upper Hubbard band necessarily would lead to
Luttinger liquid (Z =0) properties for a strongly interacting electron gas, as opposed to Fermi liquid. In
this paper we identify the singular scattering diagrams and make a hypothesis about the form of the
ground state of the 2D Hubbard model.
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In a recent Letter' we argued that the existence of an
upper Hubbard band necessarily would lead to Luttinger
liquid (Z=O) properties for a strongly interacting elec-
tron gas, as opposed to Fermi liquid. In this paper we

identify the singular scattering diagrams and make a hy-
pothesis about the form of the ground state of the 2D
Hubbard model.

In order to demonstrate the singularity, we assume
that the state is a Fermi liquid and show that forward
scattering modifies the state in a singular way. The most
extensively studied 2D problem is the low-density limit,
studied by Galitskii and Bloom, and known by expan-
sion in n to go to a Fermi-liquid limit as n 0. We do
not quarrel with this but identify new singular terms pro-
portional to (inn) ' which are controlling for all finite
n. The relevant terms must be treated outside conven-
tional many-body perturbation theory because they enter
not in the standard perturbation series as conventionally
used but in the initial determination of the scattering
vertex or "pseudopotential" to be used in that theory,
i.e., in replacing the bare scattering potential V by a
"scattering matrix" T which describes the local response
of the wave function of one particle to the potential of
another. Unfortunately, T has very complex low-energy
singularities on the "energy shell" which depend crucial-
ly on boundary conditions, and once boundary conditions
are included forward and backward scattering are no
longer clearly distinguishable. The correct treatment of
the singularity can always be managed by directly calcu-
lating the energy shift in the particle-particle channel,
which we now do.

Schrodinger's equation for an eigenstate with energy E
of the two-particle scattering problem in a channel of
momentum 2k for a pair of opposite-spin particles
reduces to

L /U =g(E et +g Et —g)
Q

Let ek+g+ei, —@ =ED, where 2Q is the relative momen-
tum of the particles in a given intermediate state. There
will be an eigenvalue E of (1) above every value of Efi
and below the next one; the lowest one, E(Q =0), will be

1/(E —E,)-L',
atld sitlce E~ Ep is -L, 8 0 as I/L; this is conven-
tional scattering length theory and leads to the Fermi
liquid. However, in this case the l=0 channel must be
treated more carefully, which we have not yet done. In
2D, the sum diverges at both ends logarithmically, and
the eigenvalue equation reduces to

1 d Q L—I PE —Ep —EQ

1 1=L 2ln
E —Ep g 2Q2;„'

so that 8-1/InL which, as Bloom showed, represents a
divergent scattering length but is sufficiently small to al-
low a Fermi-liquid theory. Note the relevance of the
upper cutoff z/a; the problems do not occur for free par-
ticles, with a 0.

Something quite new happens if we go to finite (if
small) density and consider particle-particle scattering at
the Fermi momentum kF (k =2kF). Now we must ex-
clude occupied states from the sum in (1) and it reads

I 2

U
(2)

Q E —EQ

where g' implies that neither k+Q nor k —
Q is inside

the Fermi surface. Figure 1 shows the eAect of this ex-

that for forward scattering, and we may write [E(Q =0)
—Eo]l(Ei —Eo) =8/ir, where 8 is the phase shift in the
isotropic channel. (We use the low-density limit to justi-
fy the simplifying assumption that the problem is ap-
proximately Galilean for small Q. The higher energies
EQ will not satisfy this, but they only enter in upper lim-
its of integrals. The arguments go through, but less sim-

ply, for any k. ) The sum in (1) diverges at low Q in 1D,
and as a result in 1D, 8=x independently of U and of
the upper limit. This means that at low density opposite
spins effectively obey an exclusion principle in 1D as is
well known from the Hubbard model literature. In 3D
the sum converges at the low end, and is controlled by
the large values of Q, so that in general even for large U
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FIG. 1. Region of recoil momentum g excluded by the Pau-
li principle.

Z e (b/lr ) 1 ll I 0 (3)

Recognizing that for finite time or frequency, (L'),ff-t p/ru, this gives us a form for the singularity,

Z(ru) ——BX
(4)

for small 6', this closely resembles the lnco behavior pro-
posed on experimental grounds.

Finally, we note that the only way an eA'ective intra-
particle potential can lead to a finite phase shift for for-
ward scattering is for it to be long ranged. Thus we

could model the eAect of the exclusion principle on for-
ward scattering as a long-range pseudopotential —I/r,
which is the major eA'ect of the gauge field proposed as
another way of enforcing the projective transformation
eliminating the "upper Hubbard band. " This approach
is thus not necessarily in conflict with gauge theory
methods.

We should reiterate that Landau's Fermi-liquid theory
is based on the consideration of relative energy scales,
equivalent to a renormalization-group theory. The
relevant, fixed-point Hamiltonian P* is the free Fermi
gas; the Landau interactions f&& nq n&, which embody
only the renormalized Hartree forward and backward
scattering terms, are marginal, i.e., of order co or T, and
all of many-body perturbation theory is irrelevant at the

elusion: It removes all but a fraction Q /zkp of the
phase space at a given small ~Q ~. This eliminates the
"recoil" effect which we might expect would prevent
singularities. Now the principal part integral converges
nicely, behaving like (I/kp) fQ QdQ/(Eg —Eo) for
small Q. For small kF the singular term becomes
In(1/kpa ). Therefore the phase shift becomes finite, of
order 8-z/21n(kpa). As kp increases, we have in gen-
eral a finite phase shift 8 somewhere between 0 and z. A
finite phase shift for forward scattering has very severe
consequences for Fermi-liquid theory. In particular, it
means that two particles (or quasiparticles) of opposite
spin may not occupy the same plane-wave state, as is as-
sumed in Landau theory, in which it is assumed the fixed
point is the free Fermi gas. It also implies that the re-
normalization constant

fixed point, i.e. , of order co or T, which makes it hard
to pick up the difficulties in that theory. Haldane's
"Luttinger-liquid" theory, which is the one-dimensional
response to diverging Hartree terms, rediagonalizes the
first two terms in the hope that scattering will still be ir-
relevant, since one has done as little damage to Fermi-
liquid theory as possible. We now try to carry out the
same program in 20, but of course, unlike the above, we

must now move into speculative territory.
To do this we follow Fermi-liquid theory in doing first

a conventional renorrnalization eliminating high-energy
virtual scatterings, and assume that the remaining
"quasiparticle" states involved in low-energy excitations
all have momenta near a Fermi surface. This elimina-
tion will only have made the eff'ective singular forward
scattering bigger.

At this point we are talking about renormalized,
"quasiparticle" states, which have singular density-
density interactions but all virtual scatterings into high-
momentum states are renormalized away. Whether Fer-
rni liquid or not, simple geometry shows that all real
scat terings of pairs of particles near a Fermi surface are
"nondiA'ractive" in Sutherland's sense: The momenta
are conserved, only spin can be exchanged. Thus for the
eff'ective particles, a Bethe ansatz may be assumed:

+ = +exp +kg, xpj [Q,P],
p g

with the set of k's invariant. The [Q,P] determine the
spin state; the k's determine how charge moves. But the
eÃect of singular forward scattering is to tell us that the
set of k's occupy a volume in k space greater than that of
the Luttinger Fermi surface; this is precisely what hap-
pens in the one-dimensional case. In this event the dis-
tribution of k's has no singularity near the Fermi surface
and all low-energy charge motion takes place by collec-
tive "sliding" motions of the k distribution. (As in ID,
the k's are not real particle momenta and do not deter-
mine the Fermi surface which depends on the spin
motions alone. ) Following Luther, we can rewrite the
free-particle Hamiltonian in terms of charge- and spin-
density waves moving in a given direction 0 with Fermi
velocity v~. The spin-density waves encounter no singu-
lar scattering (triplet pairs do not forward scatter) but
the charge-density waves must be rediagonalized by the
standard Bogoliubov transformation to take into account
the singular scattering, thus leading to diferent charge
and spin velocities and to charge-spin separation. The
collective charge modes may be thought of as "holons"
but are not particlelike. In particular, they are not
affected by elastic scattering, by an argument similar to
the "dirty superconductor" theorem. Residual resis-
tance can be caused only by spin scattering. We suggest
that the state may be considered to be a T,. =0 supercon-
ductor, in the absence of spin scattering. More detailed
discussion of specific properties will be published else-
where. 9
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