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Nonlinear Resonances and Suppression of Chaos in the rf-Biased Josephson Junction
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The response of rf-biased Josephson junctions to special aperiodic driving forces is studied through
theory and numerical simulation. It is shown that aperiodic driving forces of very small amplitude can
transform the junction from a stationary state into the rotation state, In addition, it can be shown that
the resulting dynamics is not chaotic, in contrast to the generic dynamics resulting from a sinusoidal
driving force. We discuss possible experimental applications.

PACS numbers: 74.50.+r, 02.60.+y, 05.45.+b

The Stewart-McCumber model' for dynamics of rf-
biased Josephson junctions is frequently used as a test
case in nonlinear dynamics. In this paper we investi-
gate the Stewart-McCumber model with an aperiodic
forcing, which models aperiodically biased Josephson-
junction oscillators. In particular, we focus on the situa-
tion where a nonchaotic response of large amplitude
emerges from a small driving force. This is called a non-
linear resonance The p. roblem of finding nonlinear res-
onances is closely related to the problem of optimal con-
trol of nonlinear systems. Whereas extensive literature
exists on the subject of linear controls with feedback and
without feedback, little is known about their nonlinear
counterparts. ' ' ' Recently, progress in chaos the-
ory ' had led us to a new approach to the control pro-
cess. ' ' If the experimental dynamics is given by
x =f(x,p(t)+F(t)), where both the set of parameters p
and the set of driving forces F depend only on time t,
then the limiting behavior of x(t ~) can be made
equal to a given goal dynamics y(t), where y
=g(y(t), t), by an appropriate F. This complete en-
trainment occurs if both sets of flow vectors are made
equal, i.e., f(y, p(t)+F(t)) =g(y(t), t) and if the spe-
cial solution x(t) =y(t) is stable. ' As soon as the goal
dynamics can be integrated in a closed form, one has a
closed form for the response of the driven experimental
system too, even if the driving force is aperiodic.

Considered within the Stewart-McCumber model, '

the system to be studied consists of an ideal Josephson
element of critical current I, shunted by a capacitance c
and resistance R and driven by a current source which
includes a dc component of amplitude Io and an rf com-
ponent 1~(t). In terms of dimensionless parameters, the
equation of motion for the junction phase p is

jY+p„' &+sing =p+F(t),
where p, =2eI,R c/h. is the Steward-McCumber pa-
rameter, p is the dc bias normalized to the critical
current I„and, for a sinusoidal force, F(t) =p~ sin(Qt),
with pl also normalized to the critical current and 0 the
driving frequency normalized to the plasma frequency
ta, =(2ei, /Ac)' . If both the friction ri=P, ' and the

driving force are zero, i.e., ri =0 and F=0, then E =p /2
+V(p) is a constant of motion, where V(p) = —cosp—pp. E is the energy of the system in units of the
Josephson coupling energy 61,/2e

Since the transition from a stationary state to a rotat-
ing state due to the transfer of a certain minimum ener-

gy is experimentally accessible, it is of interest to effect
the transition with driving forces of small amplitude.
Such an optimal driving force is determined using a vari-
ation method which seeks to minimize the mean-square
amplitude of the applied rf component of the current
F =(I/T)fo F dt while maintaining a fixed energy
transfer to the junction given by IsE =fo Fpdt The op-.
timal driving force F(t) = (ri+ ri') tit, where y' —g'tl'r

+sin y =p, is obtained by a variation of F. '
y is the

goal dynamics in terms of control theory. p(t) =tlr(t) is
a special solution of Eq. (1). The constant ri' is a
Lagrange parameter.

A second variational method was also investigated.
Rather than minimizing the force, the second method in-
volves a 100% absorption of energy, i.e. , the minimiza-
tion of energy reflected by the Josephson oscillator.
Once again, this is considered for a fixed energy input
IsE. The reflected energy is defined as

where e(. ) is the step function. Since Ftlp& 0 indicates
energy that is absorbed by the junction, the choice of
sign for the integrand of hE„mandates that hE„~ 0.
However, if we assume F to be of the form
F = [tl+ tl'(t) ] y, where tii ti'(t) tlr+ sin tlr

=—0 is the cor-
responding goal dynamics, then, for the special solution
of y(t) =p(t), F&~ 0, given ri+rl'(t) ~ 0. Therefore,
hE, =0, and we have the reflected energy at a minimum.

The only difference between the variation methods is
that for the second method g' may be time dependent.
This free time dependence can be used to match the re-
quirements of an experimental apparatus. Within this
context we will investigate three typical situations: (i)
tl'=const, (ii) the frequency changes linearly in time,
and (iii) the amplitude of F is constant in time.
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Figure 1 shows a typical simulation process for p =0.1,
and g'=t) =1/P,'t =0.01. All of the following discus-
sions will be made for t) 6 [0.01,0.2] which are reason-
able for an experiment with a real Josephson junction.
For g=0.2, the oscillation is heavily damped, and for

g =2, the unperturbed junction is overdamped. For
g=0.01, the dynamics is already nearly conservative
since the junction loses only —1% of its energy per oscil-
lation. Particularly for small g, optimal driving forces
seem to be much more efficient than sinusoidal driving
forces. For example, in order to switch the junction from
a stationary state to a rotation, the maximum amplitude
of the driving force F,„=ma.xF(t) has to exceed a criti-

itt = tent(t )sine(t) + itt;„, (3)

where the amplitude of the oscillation increases expo-
nentially, y(t) =(yu —y;„)exp( r'lt 2/), and where 4(t)
: = toot —C/t)'y . i)tu. =y(t =0) is assumed to be close to
y;„. too= [cos(y,„)]' is the eigenfrequency for small

cal value which depends on g. It turns out that

F, = g[4cos(tent, „)+2p(2itt;„—tr)] 't'

is a good estimate for this if optimal driving forces are
used, where ]4[1;„=arcsinp gives the shift of the minima
of V due to p. Figure 2 shows a comparison between F,
and F,"", the latter being the corresponding critical value
for a sinusoidal driving force. Although F,"" can, in

principle, be determined by algebraic methods, we es-
timated it numerically by a systematic search through
the p]-0 plane. Figure 2 shows that at g=0.01, F, is al-
ready about 1 order of magnitude smaller than F,"",
whereas for t) =0.2, the difference between F, and F,"" is

less; the nonlinearity is masked by the friction.
In our numerical investigations, we varied p in the

range 0. 1 & p &0.9. For large p the asymmetry of the
oscillations increases, and higher-order Fourier ampli-
tudes tend to increase. We will mention approximations
where the magnitude of higher-order Fourier amplitudes
enters. We found no qualitative changes in the response
as long as p is not close to unity or larger than unity.
The magnitude of g' is chosen just large enough to
transfer within ten or more oscillations enough energy to
the junction to switch from a stationary state to a rota-
tion state. The minimum amount of energy required for
this operation on a conservative system is hE;„=4
&icos(t)tm;„)+2p(2y;„—tr), but it can be much larger
for damped systems.

Using the method of multiple scales, by eliminating all
secular terms up to third order for small t)' and small y,
we obtain the following estimate for the goal dynamics
(see Fig. I):
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FIG. 1. The goal dynamics y, the optimal driving force, and
its frequency vs time ( ) for a fixed t)'. Depicted is every
third extrema. They are connected with lines. We calculate
first the goal dynamics, use the resulting time series for the cal-
culation of F, and finally integrate Eq. (1). itt(t) provides also
an illustration of tt(t), since after a short transient at t =0, itt is

equal to p within the numerical accuracy. The numerical esti-
mate of co results from the period between succeeding extrema
of tti(t) The analytic esti.mates ( )for the amplitud-e--s of the
three quantities.
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FIG. 2. The ratio of the critical amplitudes of the driving
forces F,""/F, vs the Steward-McCumber number P, for

p =0.1.
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amplitudes, and C=(1.5+p )/24(1 —p ) represents the
amplitude-frequency coupling. The frequency of y is

given by co =@=coo —Cy .2

Equation (3) indicates that for a small rt', y(t) can be
approximated by a sine function, for which both the am-

plitude and the frequency vary slowly in time compared
to the typical time scale of the oscillation. If we assume
that the amplitude increases exponentially up to the or-
der of x, then we get an estimate for the stimulation time
T„which is the minimum time required to switch the
junction from a stationary state to a rotating state by an
optimal driving force; T, = 2ln[(z —2y;„)/P(t =0)]/rt'.
In the parameter region we investigated this estimate de-
viates less than 10% from the numerical value. At j

z —2y;„, V has a local maximum. As soon as y be-
comes larger the dynamics becomes a rotation.

Since the driving force F is directly proportional to y,
the amplitude and frequency of F also vary exponentially
in time. Since such a time dependence can hardly be ap-
proximated by a linear relation, it does not seem to be
possible to do the experiment with present technology.

However, using the second variational method, one
can find an optimal driving force where the frequency
varies linearly in time. Since the basic time scale of y
changes slowly, we can estimate the frequency shift by
to'=(dto/dj)E/(dE/dj) Ecan .be estimated by E
=2rl'E if we assume that higher-order Fourier ampli-
tudes of y fall oA' rapidly. Using these approximations,
rt' reads
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for a fixed frequency shift m' & 0.
Figure 3 shows such a stimulation. The numerical

simulations indicate that for this type of excitation the
amplitude of the driving force approaches a constant
value close to F, [Eq. (2)] in the limit of large t This.
property makes them favorable for experiments with

present technology since the frequency shift is, by
definition, kept fixed, and the time dependence might be
approximated by a constant equal to the limiting value of
the exact driving force. The amplitude of the driving
force can be estimated by

stimulation time,

&, = —[(tr —2y, .)' —(yo —y;„)']C/to'. (5)

FIG. 3. The goal dynamics y, the optimal driving force, and
its frequency vs time ( ) for a fixed frequency shift
co'=0.0005, where P„=10000, and p=0. 1. Depicted is every
seventh extrema. They are connected with lines. Because of
the asymmetry of the oscillation the numerical value for the
frequency oscillates. The analytic estimates (---) for the am-

plitudes of the three quantities.

F(y, to', rt) = [tl+ ri'(y, to')] [2E(y)]" .

It has a maximum during the first few oscillations,
reaches a minimum, and then approaches a value close
to F, [Eq. (2)]. For large co', this minimum vanishes and
F simply decreases in time. For small cu', the amplitude
during the first few oscillations is smaller than F„but at
a certain co,', it exceeds this value. If the amplitude dur-
ing the first few oscillations, for example, is estimated by
Ff(ro', rt) =F(z/6, to', rt), we get from Ff(to,', rt) =F, a
good estimate for to,'. If we use ro = —Cd@ /dt =to', we
obtain from y(T, ) =tr —2y;„a good estimate for the

Certainly it is also possible to calculate driving forces
which satisfy the second variation method and where the
amplitude of F is kept at a constant level F,. „. This can
be achieved by rt'(t) =(F,„—F, )(2E) ' . .F,„hasto.
exceed F, [Eq. (2)] in order to get a growing amplitude.
In this case we find that for a certain range of F „. „, the
frequency decreases approximately linearly in time (for
example, rt=0.01, p=0. 1, and F ,„=0.019), whereas.
for larger or smaller values of F „. „, the frequency-time
relation describes a curve. The driving forces with a con-
stant amplitude and a linear frequency shift F(t) =F
x sin [(too —ro't/2) t] represent a compromise between
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FIG, 4. The critical amplitude F' „„vs the frequency shift co'

in dimensionless units for P, 10000, 2500, 100, and 25,
curves a d, and -p=0. 1. The theoretical estimate ( ).

both constraints, the constant amplitude and the con-
stant frequency shift.

Therefore, we investigated those driving forces in de-
tail. They are applied for a time of length T, . For T,
we used the estimate given by Eq. (5). Extended numer-
ical investigations show that F,, „has to exceed both F,
and Fy. As long as vo' is smaller than at,', F, is larger
than F. Therefore, the minimum amplitude F',. „neces-
sary to transform the system from a stationary state to a
rotation state is independent of nt' and given by F, (see
Fig. 4). Above to,', the limit increases at a rate that can
be roughly estimated by F'„„=F(tr/6, ta. ', rt) Once F i.s

larger than these limits, the amplitude and the frequency
shift of the junction are very similar to the response to an
optimal driving froce with Axed frequency shift. Espe-
cially for small co', which is the experimentally interest-
ing case, a driving force with a fixed frequency shift and
an amplitude equal to or larger than F, [Eq. (2)l seems
to stimulate the junction.
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