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Experiments on the formation of faults in a laboratory model of the Earth’s crust are presented; they
respect its vertical rheological stratification, a brittle layer on top of ductile layers. As a result of the
competition between the different nature of the brittle- and ductile-layer deformations, complex fractal
patterns of faults are formed with fractal dimension 1.70 & 0.05 independent of the fault densities asso-
ciated with different brittle-ductile coupling. We propose a kinematic formulation of the mechanical
problem which suggests an analogy with previously studied fractal-growth problems.

PACS numbers: 62.20.Mk, 91.35.Gf, 91.45.—c, 91.60.Ba

Since the introduction of the model of diffusion-
limited aggregation' (DLA), considerable interest has
developed in a wide variety of growth phenomena.?*?
More recently, rupture has been studied from the point
of view of “fractal growth.”*® In most of the rupture
problems which have been considered, a crack is irrever-
sibly formed when the stress applied to a given portion of
the system exceeds its rated rupture threshold. Once
failed, the cracked domain cannot sustain stress any-
more. As a consequence, screening and enhancement
effects occur on large defects and can have a long range.
Crack growth patterns*® can thus be related to those
appearing in so-called Laplacian growth processes. '~

However, in nature, most systems present a greater
complexity. First, cracks can propagate in mode II
(shear) or III (torsion) and can still support important
stresses after their formation (in this case, we call them
faults). Second, the constitutive material laws often de-
viate from pure elastic to plastic with irreversible defor-
mations. Third, cracks often do not propagate in direc-
tions parallel to the plane of maximum deviatoric shear
stress. This leads to a breakdown of coaxiality between
the applied stress tensor and the resulting strain tensor’
and to the formation of complex crack patterns® which
depend on the material, on the boundary conditions, and
on the nature of the solicitations.’

In this Letter, we introduce a novel general quasi-
two-dimensional mechanical model of crack pattern for-
mation which exhibits fractal rupture patterns. This
model is inspired from the structure of the Earth’s crust
and mantle and its dynamics is thought to represent a
simplified version of plate tectonics.''? It consists of a
brittle layer (dry sand with Mohr-Coulomb frictional
law with a friction coefficient k = 0.6) lying on top of
ductile layers (silicone putties and golden syrup) which
are submitted to various strain fields and different
boundary conditions. Its main novelty is that it ad-
dresses a regime of very large imposed deformations. In
this regime, the growth of the fault patterns is controlled
by the compatibility of in-plane deformations which pro-
duce long-range correlated displacements. The large de-
formations are accomodated by (1) the creation of an-
tithetic and synthetic faults and (2) rotations of faults

and blocks (because of its kinematic resemblance to the
tilting of a row of books on a shelf, this tectonic process
is usually referred to as a “bookshelf” mechanism'?).
One can thus trace back the origin of the fractal fault
structure to the long-range correlations of the in-plane
deformations introduced by our choice of boundary con-
ditions (see below).

By varying the ductile-layer viscosities, we have inves-
tigated a large range of rheologies and corresponding
fault patterns. For loose boundary conditions allowing
long-range propagation of strain, we observe fractal fault
patterns with fractal dimension Dy =1.70£0.05. A re-
markable result is the independence of D, with respect to
the ductile-layer viscosities. On the other hand, the dis-
tribution of fault lengths, which seems to exhibit a
power-law dependence over a limited range, is sensitive
to the rheology.

In one set of experiments reported here, a wedge of
rectangular shape and transverse dimension =20 cm
penetrates at constant velocity U =5 cm/h into the sys-
tem (of size 40 cmx 68 cm) from the southern side. The
other sides are confined by rigid walls, except the eastern
side which is kept free. The upper brittle layer is made
of quartz uncemented sand of aeolian origin from Fon-
tainebleau (France). Sieving retains the fraction below
0.2 mm. The layer fails according to a Mohr-Coulomb
frictional law (rupture occurs in a given plane when the
shear stress along this plane exceeds the normal stress
times a friction coefficient k), and presents a negligible
cohesion. Shear failure occurs along faults (in fact, nar-
row shear bands) where progressive dilation causes strain
softening and hence localization of the strain. The lower
layers are made of two silicone putties of different viscos-
ity n (from 0.5%10*% to 7x10* Pas) and density (from
1.2 to 1.35). The basic material is Gomme 7007,
manufactured by Rhone-Poulence, France. It is perfect-
ly Newtonian at the experimental strain rates (less than
1074 s7'). The three layers float on a thick layer of
golden syrup which ensures a free boundary condition at
the bottom of the silicone layers (see Fig. 1 for the
values of the thickness, density, and viscosity of the
different layers).

The indentation is accommodated (see Fig. 1) by
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thickening in front of the indenter and by eastward la-
teral escape towards the free boundary. Except in front
of the indenter, the deformation generates a pattern of
vertical faults with horizontal shear components (mode
I1). In this region, the strain field is quasibidimensional
and propagates throughout the system ensuring long-
range correlations. In this Letter, we focus on the geo-
metry and fault structure of this region. Note that these
boundary conditions are a simulation of the collision of
Asia with the Indian subcontinent which produces moun-
tain ranges (Himalayas) in front of the indenter and a
penetrative deformation of Asia as far as 5000 km north-
ward of the India-Asia boundary. Experiments of the
kind presented here have been scaled down to represent
the mechanics of the lithosphere'' in order to study fault
patterns observed at the Earth’s surface.

Experiment 1 is shown in Fig. 1 and its digitized ver-
sion in Fig. 2(a). One can observe a very broad size dis-
tribution of fracture regions. Two main fault directions
(northeast and northwest) are present which are com-
patible with that of the northward maximum principal
stress axis o, (parallel to the direction of indentation)
and that of the eastward minimum principal stress axis
o3 (perpendicular to the free boundary). More precisely,
they are tilted by an angle =% (x/4—¢/2), where tang
=k (=0.6) is the coefficient of the frictional law. The
northeastward fault family directly ensures lateral es-
cape of a triangular block (the southeast corner of the
sample). The conjugate (northwestward) family devel-
ops an antithetic motion compatible with the escape by

e

FIG. 1. Top view of experiment 1 and its setup. The rec-
tangular wedge has penetrated over a distance of 15 ¢m in an
initially undeformed system. The deformed array of white pas-
sive markers was initially a perfect square lattice. The free
boundary on the right was initially a straight line 10 cm away
from the indenter. The parameters of the experiment are as
follows: upper brittle layer (sand) of thickness =0.5 cm, densi-
ty=1.2; upper silicone of thickness=0.5 cm, density=1.2,
viscosity =0.6x 10* Pas; lower silicone of thickness=0.5 cm,
density =1.4, viscosity =7x10* Pas; golden syrup of thick-
ness =5 cm, density =1.47, viscosity =100 Pas.

counterclockwise rotations (so-called bookshelf'?). One
can identify a hierarchy of conjugate fault pairs forming
A-shaped domains of decreasing size.

In order to explore the self-similarity of the observed
fault pattern, we have applied a fractal analysis to the
digitalized version Fig. 2(a) of the photograph shown in
Fig. 1. We measure the total length L (r) of the faults in
a box of size rxr centered on a point belonging to a
fault. Our algorithm first determines the position of the
two ends of each fault, from which its length is comput-
ed. L(r) is then obtained by summing all fault lengths
within the box of size rXr. Averaging over typically 100
different points inside the fault pattern, we obtain that
the total length L(r) can be fitted by L(r) ~r" with a
fractal dimension Dy =1.74 +0.05. We have also mea-
sured the distribution P(/) of faults of length / out of a
total number of 135 digitalized faults. It can be fitted by
the expression P(/)~/7“ with an exponent a=2.0
*0.1. Both power laws hold for r (/) in the range
0.3-10 cm (1-10 cm). The upper cutoff comes from the
finite size of the indenter (A =20 cm). The lower cutoff
Imin 1s controlled by the finite thickness 4 of the brittle
layer and by the finite resolution of the digitizing pro-
cess. This comes from the fact that most faults nucleate
at the brittle-ductile interface, as demonstrated from x-
ray-tomography studies.'* Therefore, a fault will be ob-
served only when its length is larger than .

Other experiments have been performed under dif-
ferent brittle-ductile conditions. Figure 3 presents the
results of experiment 2, performed under the same
boundary condition as in Figs. 1 and 2 but with more
viscous ductile layers. One can observe that the fault
pattern is denser than in Figs. 1 and 2(a). Other experi-
ments confirm that the higher the viscosity of the ductile
layers, the denser the fault pattern.'’? Note that this is
not in contradiction with our observation that Dy
remains approximately constant since D, measures only
the relative self-similarity of the fault pattern and not
the absolute number of faults or absolute total fault
length. The geometry and fault density come from the
coupling between the brittle and ductile layers and their
opposite mode of deformation. The brittle layer
responds to an applied strain by the development of
faults since it cannot deform by more than 10% without
creating a fault. The ductile layers tend to smooth out
the velocity discontinuities associated with faults. As a
result, in the small-viscosity cases, one expects and ob-
serves (see, for example, Fig. 1) the appearance of a few
long faults presenting large offsets. The existence of a
relatively large number of additional smaller faults may
be attributed to deformation compatibility requirements
(see below). In the large-viscosity cases, large offsets are
forbidden by the viscous coupling. The strain is then ac-
commodated by many faults with small offsets.

In Fig. 3, as in the previous case shown in Figs. 1 and
2, one can notice a hierarchy of fault lengths and A-
shaped fault pairs for two different displacements of the
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FIG. 2. Analysis of the fault pattern obtained in Fig. 1. (a) Digitized fault pattern; lengths are given in millimeters, i.e., 100 cor-
responds to 100 mm. (b) Logarithm of the total length L(r) (in millimeters) of faults in a box size »Xr as a function of logr (r is
given in millimeters). L(r) is fitted by L(r) ~r" (thin line) with D;=1.74 £0.05. The curve denoted 2 gives the local value of the
slope (read on the scale on the right) of the log-log representation of L(r). It gives an estimate of the uncertainty attached to D;.
(c) The number of faults N(/) =fAP(')dl' of length larger than / (in millimeters), fitted by N(/)~! ~°*' with a=2.1£0.1.

indenter. The fractal dimension Dy is found to be essen-
tially constant around 1.7. However, the fault-length
distribution P(/) changes with time. Over roughly a de-
cade, P(/) can be fitted by a power law P(I) —~I ~%, with
an exponent a decreasing from 2.5+ 0.2 [Fig. 3(a)] to
2.0%0.2 [Fig. 3(b)]. This reflects the growth of large
faults at the expense of smaller faults fusing together.

These experimental results allow us to understand the
main roles of the ductile layers. (1) Viscous stresses are
small at larger scales (n8v/dx = 1-10 Pa for our typical
viscosity and wedge velocity v = 5 cm/h over a distance
of the order of 10 ' m) compared to mechanical stresses
in the upper brittle sand layer (typically of the order of
pgh = 10?% Pa, where g is the gravitational acceleration,
h=10"% m is the thickness of the sand layer, and
p==2000 kgm ~ 3 is the density of sand). Therefore, sil-
icone layers ensure free boundary conditions under the
sand layer, which is an essential condition for the proper-
ties that we report. However, at small scales (= 10 ~3-
10 "% m), viscous stress dominates and prevents velocity
discontinuities. This explains the difference in fault pat-
terns at small scales when varying the silicone viscosity.
(2) The sandwich structure of the sand-silicone system
favors in-plane two-dimensional shear rupture compared
to three-dimensional thickening (which is only observed
near the penetrating wedge). Indeed, thickening must
overcome the total gravity force which increases with the
total thickness of the system, whereas 2D shear rupture
occurs when the shear stress is larger than a threshold
which is a function only of the sand thickness.

In order to rationalize these results, one needs to know
(1) the constitutive mechanical equations governing the
deformation field, (2) the boundary conditions on the
border of the system and on the growing structure
(faults), (3) the rate of growth of the faults in relation to
the deformation field, and (4) the nature of the disorder
if any. We now discuss these points successively.

(1) We first propose to reduce the complexity of the
full mechanical equations by focusing on the 2D kine-
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matics only, namely, on the constraints applying to the
deformation field. We note first the essential role played
by the silicone layers which ensure that the deformations
are two dimensional except near the wedge. A given de-
formation can be decomposed into pure shear strain,
rigid-body rotations w, and isotropic strain & (corre-
sponding to a change of surface associated with pure
compression or extension). The rotation field w plays an
essential role in the structuration of the fault pattern via

(a) (b)

10K 4 2.0 10K4 ,01
s |
11K -8 1K 1
.6 . B
100 100+
1.4 a
104 10
1.2 21
{
|
1 T L 1 d
1 10 100 iK 1 1K

FIG. 3. Two stages of experiment 2 corresponding to the
following parameters: same as in Fig. 1 except for viscosi-
ty =2.3x10* Pas for the upper silicone layer, and lower sil-
icone of thickness=1 cm, density=1.4, and viscosity =4.5
%10* Pas. The same unit of length (millimeter) as in Fig. 2 is
used. (a) 12.5 cm and (b) 20 cm of indentation. In each case,
the digitized fault pattern is shown with the cumulative length
L(r) defining the fractal dimension: (a) D;=1.70+0.05 and
(b) D;=1.74 £0.05.
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the bookshelf mechanism.'® The isotropic strain & con-
trols the pressure which itself affects the Mohr-Coulomb
rupture criterion. Also, the corners of the A-shaped
domains, recognized previously as the building blocks of
the fractal fault pattern, are the loci of high three-
dimensional compressive strain inside, due to the motion
of the two border conjugate faults. It is thus natural to
expect that w and ¢ should play an important role in the
formation of fault patterns. Indeed, it can be shown that
the compatibility requirement between the various dis-
placement gradients at each point of the system can be
formulated explicitly within differential geometry and
leads to second-order differential equations'>'® relating
rotation, isotropic, and shear deformations. In particu-
lar, the two fields ¢ and o satisfy exactly the Laplace
equation V2V =0 (for ¥ =¢ or w) in the variables (x;,y;)
which are connected to (x,y) by (dx;,dy;) =A(dx,dy),
where A is the displacement-gradient tensor associated
with the isochoric part of the deformation.'® In this lo-
cal frame (x;,y;), nonisotropic deformations are removed
which allows approximate preservation of the position of
the barycenter and the direction of the principal axis of
the fault pattern during the growth process. Note that
the compatibility equations generalize to nonelastic ma-
terials the equation V2divu=0 in elastic materials,'®
where u is the local deformation vector. The Laplace
equation describes the existence of long-range correla-
tions: For instance, once a fault is created, the stress and
strain fields are redistributed over large distances (mean-
ing algebraic decay of the stress) with stress enhance-
ment at the tips.

(2) The boundary conditions are of mixed nature:
The deformation is imposed on the penetrating wedge
and must vanish on the rigid borders, whereas the stress
is almost zero in the free east border. On a fault, there
is a discontinuity of the displacement on both of its sides
in a direction parallel to it, whereas displacements or-
thogonal to the fault are continuous in the absence of
uplifting, overlapping, or void creation. Associated with
this strain discontinuity, the shear stress along a fault is
decreased. Even if this shear stress does not strictly van-
ish due to a remanent friction along the fault, this condi-
tion is similar to that of vanishing of the electrical
current flux normal to a crack in the dual dielectric-
breakdown model (DBM).* “Dual” refers to the trans-
formation (current<>voltage), (resistance<«>conduc-
tance), and (horizontal<«>vertical) boundary conditions.
Note that the creation of a fault entails a spatial redistri-
bution of stress and strain induced by the stress drop as-
sociated with faulting, in a way analogous to the redistri-
bution of currents in the DBM.

(3) A fault is created as soon as both following criteria
are fulfilled: (i) a sufficient shear deformation (larger
than 10% for sand) and (ii) a ratio of the shear stress
over normal stress larger than the friction coefficient k.
One thus expects that the rate of fault formation in-
creases with the rate of deformation within the system.

(4) Finally, the source of ‘“noise” can be found in
small-scale imperfections in sample preparation in both
the sand and silicone layers.

The analogies between these four ingredients and
those entering in the DBM model are not sufficient to
prove that both problems belong to the same universality
class as suggested from the measured value of the fractal
dimension, which is very close to that of DLA and DBM.
The morphologies of the growth pattern are different,
essentially due to the possibility for faults to develop un-
connected to previous ones. The difference may also be
attributed to the fact that under the change of reference
frame from (x,y) to (x;,y;), the metric properties are
not conserved locally which implies that the morpholo-
gies are distorted inhomogeneously under the frame
transformation. However, the hierarchy of A-shaped
domains is reminiscent of the branching process of DLA
growth. In the future, we hope to clarify the relation
with DLA growth processes which has been only sug-
gested here, and to study the respective roles of the
different ingredients of the model.
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FIG. 1. Top view of experiment | and its setup. The rec-
tangular wedge has penetrated over a distance of 15 cm in an
initially undeformed system. The deformed array of white pas-
sive markers was initially a perfect square lattice. The free
boundary on the right was initially a straight line 10 cm away
from the indenter. The parameters of the experiment are as
follows: upper brittle layer (sand) of thickness =0.5 cm, densi-
ty=1.2; upper silicone of thickness =0.5 cm, density=1.2,
viscosity =0.6 % 10* Pas; lower silicone of thickness=0.5 cm,
density =1.4, viscosity=7x10* Pas; golden syrup of thick-
ness =5 cm, density =1.47, viscosity =100 Pas.



