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I model the relaxation dynamics of metastable RNA folding by means of a master equation for the
distribution of folded-state occupancies. The underlying primary sequence is considered to be random
and uncorrelated. The model is tested vis-a-vis a Monte Carlo simulation of kinetically governed refold-
ing events. The validity of a random energy model is established.
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The kinetics of RNA folding remains poorly under-
stood in spite of its paramount biological importance. '3
Crucial processes such as transcription and RNA repli-
cation yield RNA products folded into secondary struc-
tures which are biologically active. As a consequence of
the short time scales of the enzymatic events involved,
the formation of the active structure is kinetically
governed and seldom thermodynamically controlled.**
Thus, the folding of the product which emerges once
transcription or replication has reached completion has
been shown in some instances to be the most probable
among the fast-formed secondary structures.® More-
over, this structure appears to be preserved for further
polymerization events. In such instances, the degree of
folding (as given by the number of Watson-Crick base
pairs) is not maximal, the initiation sequences being
usually unfolded for further recognition by the enzyme.
Thus, the structure featuring maximal folding is biologi-
cally inert.?> The essential point is that an understanding
of the relaxation dynamics for intermediate folded struc-
tures is crucial to assess the molecular basis of regulation
and control.

In order to treat the relaxation kinetics for metastable
RNA folding with the tools of statistical mechanics of
disordered condensed matter, I shall assume an underly-
ing random uncorrelated primary sequence. Thus, the
primary sequence can be viewed as a quenched disorder.
The biological significance of such an assumption is ap-
parent for biopolymers in general.>~’ Recent results by
Ptitsyn and Volkenstein® suggest that naturally occur-
ring biopolymers might be more “disordered” than one
might expect; that is, the dominance of specific folded
forms which are biologically active appears to hold
within vast domains in sequence space.

In this work I shall prove that a random energy model
(REM) is suitable to study the relaxation of metastable
RNA secondary structures. Such models have been im-
plemented originally within the context of spin glasses
and other condensed-matter systems with quenched dis-
order.® The tenets of my model are the following:

(a) Each folded structure or configuration has associ-
ated an energy level. The total number of energy levels

is assumed to be 2™, where NV is the length of the chain.®
(b) The average number (n(E)) of energy levels with
energy FE is

(n(E))=2"22AE*) ~2expl—[E —(E)1*2AE%, (1)
where
AE?=(E? —(E)? (2)

and () denotes an average over the quenched disorder of
the thermal or statistical average; that is, an average
over sequence space of the average over all config-
urations for a given sequence.

(c) The relaxation of a given metastable RNA secon-
dary structure (configuration) is studied considering the
behavior of p(E,t), the time-dependent distribution of
the energy-level occupancies. Thus, we have

p(E,t)dE =dM(E t)/M , (3)

where dM (E,t) is the number of molecules in a config-
uration with energy between E and E +dFE, and M is the
total number of molecules.

(d) The distribution p(E,t) obeys the general master
equation

dp(E.0)/dt=—p(E,0) [ K(E'E)aE’

+ [ K(EEVp(E DE", @)

where
K(E,E")=(n(E))A ~'expl— (Enonery — E')/RT} (5)

and Enonerg 1S the energy of a ‘“‘nonergodic” transition
state separating two substates.® The term nonergodic in-
dicates the fact that we are not dealing with large con-
formational changes, with barriers of order N'/2 but,
rather, with conformational changes associated with ki-
netic barriers which scale as N '*. Such barriers diverge
far more slowly than the ergodic barriers when the ther-
modynamic limit is approached. Their existence has
been previously determined.® The nonergodic state is ac-
tually a collection of virtual random-coil intermediates
whose existence is postulated to account for the fact that
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a refolding event entails a partial unfolding of previously
existing structures. It should be noticed, however, that
for a specific chain it is not generally true that unfolding
and, consequently, dismantling of previous structures is
required for refolding: The new structure could emerge
progressively, by slippage of base pairs, for instance.
However, such progressive refolding obviously requires a
highly ordered sequence, at least exhibiting periodicity in
the distribution of base pairs. Such contexts are not con-
sidered in this work, where I focus strictly on random se-
quences, where the methods of disordered condensed-
matter physics are relevant. The validity of the general
master equation (4) supports a scenario in which refold-
ing is not progressive in the sense of small consecutive
unfolding and folding steps. Rather, existing structures
in the form of hairpins are dismantled in a first stage and
this process is followed by structure formation. Thus,
quasi-random-coil structures mediate the transitions.
Their common energy value determines the time scale in
Eq. (4). The preexponential factor A is fixed at 1.12s.3
The activation energies (Eonerg— E) are analogous to
the spin-glass kinetic barriers; that is, they scale with
N4

Enonerg—E=uRTN "%, u=u(E), (6)

with Enonerg — E the kinetic barrier or activation energy
associated with the relaxation of the folding pattern with
energy E and u the scaling factor. Throughout this
work, I shall not consider large relaxation times, corre-
sponding to vast changes in secondary structure, but only
refolding events which are accessible within the Monte
Carlo simulation; that is, those whose time span lies in a
neighborhood of the already established nonergodic time
scale.’ Thus, the relaxation time #ax for a configura-
tion with energy E is

trelax~exp{(Enonerg—'E)/RT} . @)

The variance of relaxation times is directly accessible
given its dependence on the variance in the energy of
substates, as indicated by the functional dependence in
Eq. (7). However, the variance in energies is regarded
as an adjustable parameter in the model I am consider-
ing; that is, it is estimated indirectly, contrasting the nu-
merical integration with a Monte Carlo simulation of ki-
netically governed refolding events.

(e) The final equilibrium energy Eq for temperatures
above the critical temperature for the frozen phase tran-
sition is a function of the dispersion of energies over the
quenched disorder:

E.q={E)—AE?RT. ®)
The corresponding overall relaxation time is
t=Aexp{lAE%/(RT)> =11+ E nonere/ RT} . 9)

The REM determined by the tenets (a)-(e) predicts
an increase in the average activation energy which is log-
arithmic in time. Such behavior is displayed in Fig. 1.
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The solid line represents the time dependence of the ac-
tivation energy. The plot was obtained by numerical in-
tegration of Eq. (4) with the following choice of parame-
ters: N =512, Tnonerg =AeXp(E nonerg/ RT), Enonerg — Eeq
=1.84RTN "4, AE?=1.88(RT)? and T=25°C. It
turns out that this choice of parameters allows me to
reproduce almost exactly the results of the Monte Carlo
simulation of the kinetically governed refolding events.
The latter are revealed by the dashed-line plot in Fig. 1.
The characteristic quantity z, readily accessible from the
simulation, is identical (within the uncertainty in the pa-
rametrization of free-energy contributions used in the
simulation) to the result obtained by numerical integra-
tion of Eq. (4): 1=67.1+1.6s.

For the sake of completeness, I shall describe the
Monte Carlo simulation used to obtain the time-
dependent probabilities for the transient secondary struc-
tures.>* The case of interest is one in which the primary
sequence is randomly generated, the limit of relatively
long chains is explored, and the length of the chain is
fixed throughout the simulation. The simulation mimics
a Markov process in which, as new possibilities for fold-
ing arise, previously existing metastable structures are
dismantled to allow for the formation of the emerging
ones. The Markov process is comprised of two different
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FIG. 1. Time dependence of the average relaxation time

scale 7relax. The choice of parameters is given in the text. The
abscissas correspond to the range of real time (10%-80%)
X Thonerg.  The ordinates yield the activation barriers at each
instant. The solid line is obtained by numerical integration of
the master equation (4), representing the random energy mod-
el. The dashed line represents the result of the Monte Carlo
simulation of the Markov chain of refolding events.
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kinds of kinetically governed elementary events: (I) in-
trachain partial helix formation and (II) intrachain helix
decay. In addition, I have incorporated certain features
absent in previous work:? the possibility of G-T and A-C
mispairs and the possibility of looped-out bases in the
process of helix formation. The formation of new helices
should always be topologically compatible with the pat-
tern of existing ones in the sense that no knots may be al-
lowed. This condition has been given proper combina-
torial form and as such is incorporated in the algorithm
in a standard manner. The present simulation differs
from previous approaches®? in that I have introduced a
refinement in the kinetics of helix decay.

If intrachain helix decay is the chosen event, the in-
verse mean time can be obtained from an improved ver-
sion of the expression for the kinetics, obtained by
Anshelevich et al.” These authors give the equation

t7'=fnSq", (10)

where S¢q is the equilibrium constant for base-pair for-
mation. However, their treatment does not properly dis-
tinguish between stacking and initiation of the base-
pairing process.” Thus, I shall use instead the improved
equation

t '=fnlks""'17, (11)

where S is the geometrical mean of the base-stacking
equilibrium constants (adequate for a random uncorre-
lated primary sequence) and K is the equilibrium con-
stant for base-pairing initiation (nucleation equilibrium
constant); K(A-U)=4x10"° M~ and K(G-C) =2.5
X1074M !,

The process made up of consecutive events of types (I)
and (II) has been repeated 10° times for a random un-
correlated chain of length N =512. The actual time
span for the simulation is 27 min of Cray-1S time.

The relaxation time 7., can be obtained from the be-
havior of the time-dependent probability U, =U,(t) for
the most probable secondary structure n at time z. This
function is readily accessible from our simulations. This
is particularly crucial since the kinetic barriers for inter-
conversion between metastable secondary structures also
become accessible: The activation energy for the transi-
tion between two structures is given by

{E vonerg = E(m)}/RT =E,(n— n+1)
< |Uy(t*)=Ups (t*)] 793, (12)

where the prime denotes time derivative and ¢ * is the ac-
tual instant when one structure is superseded by another
occurring with a subsequently higher probability. This
fit was found empirically. >3

The relaxation of metastable secondary structures is
completely characterized once the activation-energy
landscape for transitions is described. Thus, the kinetic
barrier encountered at any given instant should be calcu-

lated. The real-time parameter ¢ must be properly scaled
in order to determine the range of transitions accessible
from the simulation. An adequate scaling factor, T nonerg,
the therefore introduced. This factor is conveniently
defined as follows:

T honerg=A exp{[Enoncrg_E(t=0)]/RT} . 13)

Only transitions which occur within a certain vicinity
of the nonergodic time scale [(10%-80%) T yonerg] are ac-
cessible computationally. Such transitions correspond to
relatively small changes in structure; that is, they entail
substates exclusively. The regime corresponds to the
range of abscissas given in Fig. 1, where the results of
the simulation are revealed by the dashed-line plot. The
time dependence of the activation energies for refolding
events is thus displayed in Fig. 1. The activation-energy
landscape in the range of time scales considered can be
most adequately described in terms of the REM. The
signature of this assumption is the logarithmic growth of
the activation energy for transitions, as indicated by the
solid line. Thus, the validity of the REM model has been
established. The fact that no slippage in the base pairs
or progressive refolding is contemplated in the master
equation is entirely compatible with the all-or-none step-
wise refolding described by the Markov chain in the
simulation. The entire character of the problem would
be distorted if short-ranged periodicities in the primary
sequence occurred, since that could make slippage possi-
ble. Nevertheless, this situation is precluded given the
uncorrelated and random nature of the chain.

A far more arduous task would be to characterize the
relaxation in regimes which entail strongly divergent ki-
netic barriers in the thermodynamic limit (the “ergodic”
regime). Carefully biased means of exploring conforma-
tion space might be required.
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