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We present a new method for including dynamical fermions in lattice gauge theories that can increase
the efficiency of Monte Carlo simulations by significantly decreasing the amount of required computer
time. The accuracy of the method is demonstrated by comparison with numerical results obtained with
other methods in compact QED. New results on the phase transition of QED with massless fermions on

6* and 8* lattices are also presented.
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The exact solution of gauge theories with dynamical
fermions by means of numerical simulations is a difficult
task, owing to the large amount of computer time re-
quired to calculate the fermionic determinant, which, in
an exact computation, should be evaluated at each link
update. Various methods have been proposed for the
solution of this problem in the past. Some of them use
approximations which introduce systematic errors, and in
any case present serious problems of numerical conver-
gence in the physically interesting region of small fer-
mion masses, which in turn introduce new systematic er-
rors associated with necessary extrapolation processes.

In this Letter we present a method for introducing
dynamical fermions in lattice computations in which the
systematic approximations introduced are well under
control. The fundamental advantage of this method con-
sists of the fact that, by determining the effective fer-
mionic action as a function of the plaquette energy, a
single fermionic numerical simulation is sufficient to
measure the various physical quantities for every value
of the coupling constant 8 and for arbitrary number of
flavors. Also, the method used for the computation of
the fermionic determinant presents the additional feature
of allowing the computation of physical quantities for
every value of the fermion mass.

In order to test the method, we have compared our re-
sults for compact QED in four dimensions with those ob-
tained by Dagotto and Kogut'? using the hybrid algo-
rithm on 6* and 8* lattices, finding perfect agreement.
In addition, we have computed the energy per plaquette
and specific heat of massless QED around the confining-
Coulomb phase transition.

To illustrate how the method works, let us consider
compact electrodynamics, regularized on a space-time
lattice, written in terms of Kogut-Susskind fermions and
of the standard Wilson action for the gauge part:

z = [la@layllavle ~¥e

=f[dU]detA(U,m)e S (1)

where S, is the Kogut-Susskind fermionic action and

S =23, RelU, is the pure-gauge Wilson action. A(m,U)
in (1) is the lattice Dirac operator, the determinant of
which appears when we integrate the fermionic Grass-
man variables.

The properties of the fermionic matrix A(m,U), to-
gether with its gauge invariance, allow us to write?

detA(m,U) = m" +C,(U)m" 72+ Co(UIm" "+ - -
+GWIMY T+ W), @)

where V is the lattice volume.

The coefficients C,(U), which depend on the gauge
configuration {U}, get contributions from the products of
all possible closed loops of total perimeter 2n which do
not touch. In particular, C) is constant and C, is propor-
tional to the average plaquette energy, apart from a con-
stant.

With this in mind we can write

detA(m,U) =detA(m,S(U),S,(U)) , 3)

where S(U) is the pure gauge action and S;(U) is the
collection of all other gauge-invariant operators neces-
sary to build up the coefficients C,(U) with n > 2. Using
relation (3) the partition function can be rewritten as

z=[lanists W) -E) ([atsi W)= £

xdetA(m,E E,)dE HdE,

=f [HdE,-]dE N(E,E;)e’EdetA(m,E E,) , (4)
with
NE.E) = [lauls(s) - E)TT8s; (W) — E)

the density of states of fixed “‘energies” E,E;. Defining
then the average value of the fermionic determinant at
fixed energy E as

S dE;)N(E E,)detA(m,E E;)

J(O1,dE;)N(E E,) . )

detA(E,m) =
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one gets, for the partition function,

z=[dENE)ETRAEm) = [ldUle 5, (©)

where N(E) is the density of states at energy E,

N(E)=f [I,]dEi]N(E,E,-)

= [lan1s(sw) - E). ™
Equations (6) and (7) define an effective action
Ser=BS(U) —Indeta(m,SU)) . €))

The method we propose consists in first determining
IndetA(m,E) numerically, as a function of the energy E,
and afterwards in performing a numerical simulation of
the equivalent pure gauge model (8) to measure the
thermodynamical quantities. The first step then consists
in the generation of gauge configurations at fixed energy
E with a microcanonical process and in the determina-
tion of the average fermionic determinant over the
different configurations generated. By repeating the pro-
cedure for different values of E one finally gets an ex-
pression for IndetA(m,E) by means of an interpolation
of the points obtained.

Since the numerical determination of expression (5) is
the crucial step of our method, some discussion about the
feasibility of this computation is in order. The nonlocal
character of the fermionic determinant implies that,
computing the fermionic determinant on configurations
generated with the pure gauge probability distribution at
a fixed B, one has large fluctuations that make its deter-
mination very difficult. On the other hand, by fixing the
energy of the configurations over which the determinant
is computed, a large part of the fluctuations disappear.
This can be explained by considering that the coefficients
of Eq. (2) contain products of the plaquette energy with,
in general, large coefficients; moreover, fixing the energy
prevents the system, near the phase transition, from fluc-
tuating between different vacua, so reducing the fluctua-
tions of larger loops. The remaining fluctuations are as-
sociated with transformations which leave the average
energy per plaquette (but not more complicated loops)
constant. In these circumstances the important quantity
to inquire about is the amount of computer time needed
to measure IndetA(m, E) with the precision necessary for
the method to lead to reasonable results. The answer to
this question is in general far from trivial, however, a
simple analysis of the feasibility of the method can be
carried out under some general assumptions.

Figure 1 shows the histogram of the logarithm of the
fermionic determinant at m =0.1 and E/6V =0.5103 for
a 4% lattice. As can be seen, the histogram can be very
well approximated by a Gaussian (continuous line).
Based on this result, let us consider a toy model in which
the probability distribution Pg(x) of the logarithm of
the fermionic determinant at energy E is described by a
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FIG. 1. Probability distribution of the logarithm of the fer-
mionic determinant at fixed energy on a 4* lattice; a Gaussian
distribution is superimposed (continuous line).

Gaussian function,
—alx —x0)2
Pp(x)=Ce 07", 9)

where C is a normalization constant and a and xq are
parameters which depend on the volume V, the energy E,
and mass m. From the above distribution one can obtain
through an elementary calculation

IndetA(m,E) =xo+1/4a. (10)

Since x¢ is essentially the average value of the loga-
rithm of the determinant at energy E, xo=IndetA(m,
E), it will in general be a linear function of the volume
V, thus giving a contribution to the effective action (8) of
the same order as the pure gauge term. The crucial
point is the dependence of a, i.e., of the width of the
Gaussian (9), on V. Let us assume that a— 0 as V'~
when ¥V — oo, We can have three cases. (i) v>1: 1/4a
diverges as V¥ and in the thermodynamical limit will be
the dominant contribution to the effective action (8).
(ii) v=1: 1/4a is comparable to xo as well as to the
pure gauge term. (iii) v <1: The contribution of 1/4a
disappears in the thermodynamical limit.

Case (i) will certainly be surprising, since it will imply
that, in the thermodynamical limit, the physical results
do not depend on the coupling constant. Case (ii) is the
most probable from a statistical point of view, but even
(iii) is not absurd, since it implies that the fluctuations of
the logarithm of the determinant are damped as a conse-
quence of the fixing of the energy of the configurations.

In Fig. 2 we show the behavior of the fluctuations of
the logarithm of the fermionic determinant at m =0.1 as
a function of E/6V on 4%, 6% and 8 lattices. The weak
dependence of the fluctuations on the volume which one
observes in the figure (analogous results can be obtained
even at m =0) seem to favor the behavior described in
(iii); in which case the contribution of 1/4a to the
effective action is a pure volume effect, in the sense that
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FIG. 2. Fluctuations of the logarithm of the fermionic
determinant at fixed energy as a function of the normalized en-
ergy, on 4% 6% and 8* lattices.

it will disappear in the large-volume limit. This result
allows the justification of the feasibility of the numerical
computation of IndetA(m, E).

The interpretation of the results shown in Fig. 2 in the
light of our toy model, though not providing a rigorous
proof, suggests that the method proposed can be applied,
with a reasonable amount of computer time, to realistic
models and larger lattices.

We will now briefly describe the details of our simula-
tions and some of the results obtained. A more detailed
analysis will appear in a forthcoming paper.*

Standard over-relaxation® has been used for the mi-
crocanonical process to generate fixed-energy gauge con-
figurations. On the 4% 6% and 8 lattices, 100, 500, and
1000 over-relaxation iterations separate successive gauge
configurations on which one measures the fermionic
determinant. In the computation of the fermionic deter-
minant we have used a standard library diagonalization
routine as well as a modified Lanczos algorithm; in both
cases it is possible to compute all the eigenvalues of the
zero-mass fermionic matrix, from which one can recon-
struct the determinant at every mass.

Figure 3 shows the numerical results obtained for
IndetA(m,E) on a 6* lattice as a function of the normal-
ized plaquette energy at typical values of the fermion
mass (m=0.1,0.0). In this calculation, we have used
100-500 measurements per point and the statistical er-
rors have been computed by the jackknife method. In-
terpolating the plotted points with a polynomial (solid
lines in the figure) one obtains the corresponding expres-
sion for the effective fermionic action, which now can be
used to perform a standard simulation with action (8).

Figure 4 shows the results obtained for the plaquette
energy versus 8 on a 6* lattice and at fermion masses
0.1,0.0. Our results at m =0.1 are in excellent agree-
ment with those of Dagotto and Kogut.'
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FIG. 3. Numerical results for the effective fermionic action
on a 6* lattice, vs the normalized plaquette energy at m =0.1
and 0.0. Statistical errors are not larger than the points.

An analysis of the specific heat analogous to the one
developed in Ref. 6 places the critical couplings at
(8=0.8854(3), m=0.1) and (8=0.8540(5), m =0.0).
From the same analysis we get for the height A, of the
peak of the specific heat the value A, =8.9(2) at m =0.1
and A, =8.2(3) at m =0, against the value . =7.57(13)
at m=oo (quenched case). These results tell us that
light fermions induced a faster change in the mean ener-
gy per plaquette around the phase transition point, again
in good agreement with Ref. 1.

We have also performed simulations on 8% lattices us-
ing few measurements per point when computing the
effective fermionic action (8). This calculation can be
meaningful if, as suggested by Fig. 2, the fluctuations of
the logarithm of the fermionic determinant at fixed ener-
gy are weakly dependent on the lattice volume. Proceed-
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FIG. 4. Numerical results for the mean plaquette energy vs
B on a 6* lattice at m =0.1 and 0.0. Statistical errors are not
larger than the points.
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ing in the same way as in the 6* case, we have found for
the 8* lattices very long metastability signals at
(=0.894, m=0.1) and ($=0.869, m=0). In the
m=0.1 case, the two coexistent states were located at
1.0 —ReU, =0.380,0.450 (again in good agreement with
results reported in Ref. 2), whereas for massless fer-
mions the two states were located at 1.0 —ReUp
=0.375,0.465. These results imply a gap for the energy
AE =0.07 at m =0.1 and AE =0.09 at m =0.0, against
the value AE =0.045 at m =o0.® The effect of light fer-
mions on the phase transition is again manifested by an
important increasing of the latent heat. Results on the
specific heat as well as a precise determination of the
critical couplings for the 8* lattice can be found in Ref.
4.

The errors reported in the figures are purely statistical,
associated with the pure gauge simulation with the
effective action (8). To estimate the systematic errors
connected with the procedure applied in the determina-
tion of the effective fermionic action, we have performed
simulations using different interpolation functions as well
as using curves similar to those plotted in Fig. 3 obtained
by grouping the measurements at each point in indepen-
dent samples. The results obtained in this way for the
mean energy per plaquette and specific heat were always
compatible, suggesting that systematic errors are less
than the statistical ones.

The principal advantages of this method, compared
with other standard ones, consist of the fact that a single
fermionic simulation allows the determination of the
physical observables as a function of the coupling con-
stant B and flavor number ny. Also, the method used for
the computation of the fermionic determinant allows us
to extract the dependence on the fermionic mass m. The
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method presented in this paper is equally applicable to
other gauge groups, as well as to the noncompact formu-
lation of QED and to other regularizations of the Dirac
operator on the lattice, such as, for instance, the Wilson
fermions.

To better appreciate the usefulness of the method, it
has to be considered that the results presented in this
Letter have been obtained on a VAX 8650, using less
than 800 CPU hours. Results for the chiral condensate
versus B and for the ny=1 and 16 cases will be reported
in Ref. 4.
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