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Inconsistency of Scale-Invariant Curvature Coupled to Gravity
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We show that the scale-invariant curvature action for paths, the point-particle version of Polyakov’s
extrinsic-curvature action for surfaces, does not couple consistently to gravity. The curvature action for
paths yields a massless representation of the Poincaré group with fixed helicity and so potentially pro-
vides a description of single photons and gravitons. We present a physical interpretation of the incon-
sistency in terms of the nonlocalizability of the photon and point out a conceptual kinship with the local

supersymmetry of a spinning particle.

PACS numbers: 04.20.Cv, 04.60.+n, 11.17.+y

Scale-invariant higher-derivative actions are invoked
as necessary to study the phase structure of theories of
random paths' and surfaces.? For the case of surfaces,
Polyakov® has suggested that the scale-invariant
extrinsic-curvature action is relevant to QCD, quantum
gravity, and the three-dimensional Ising model. The
scale-invariant action for paths,* aside from shedding
light on the more complicated analog for surfaces, is in-
teresting in its own right. It provides a dynamical sys-
tem potentially describing a single photon or graviton as
it gives rise to a massless representation of the Poincaré
group® of fixed helicity. Since gravity is a universal
force, it is necessary to consider the coupling to gravity.
We shall establish that the natural coupling of the
scale-invariant curvature theory to gravity does not yield
a consistent theory.

The inconsistency arises from an unusual symmetry
feature of the theory. The scale-invariant curvature
theory exhibits a hidden local symmetry in that the num-
ber of constraints is larger than one would expect on the
basis of reparametrization invariance alone. The cou-
pling to gravity, fixed by the requirement of reparametri-
zation invariance and general covariance, does not obvi-
ously respect the hidden local symmetry. Indeed, we
shall show that the constraint algebra no longer closes in
the presence of curved spacetime.

The action that defines the scale-invariant curvature
theory of paths is

S=hfdsx, (1

where & is a dimensionless constant and « is the curva-
ture. In flat spacetime the curvature is the magnitude of
the acceleration with respect to arc length

d2 211/2
K= [ [__)Zc (2)
ds
and in an arbitrary parametrization is
c=[x2%%— G- x) 22/ ()% 2 (3)

In curved spacetime g,, the curvature is again the mag-

nitude of the acceleration
x=(g,,D>x*D?x"*)'? 4)
but with covariant derivatives

dou_dix  dx® dxP

Drx ds? T ds ds ’
where I's is the Christoffel symbol. The equations of
motion in flat spacetime are simple in arc-length gauge
and helixes about null lines are solutions. The helical
motion provides a natural model of massless spinning
particles.

The theory must be recast in the Hamiltonian form to
discuss the representation of the Poincaré group and to
easily investigate the consistency of the constrained
system. Ostragradsky first formulated such higher-
derivative theories in the Hamiltonian form® and the
generalized canonical coordinates are

g=g p=iL ,0L_d
’ aq’ aq dl

(5)

aL

— |, (6)
9g

where the basic dynamical variable is g. The Hamiltoni-
an is

H=pq'+p'qg'—L (7

and p,q and p’,q’ are canonically conjugate phase-space
variables. The phase space is doubled as is appropriate
for a fourth-order differential equation.

The Hamiltonian form of the theory in flat spacetime
consists of five constraints

P-X'=0, P X'=0,
(8)
P?X?—hp%=0, P-P'=0, P2=0,

where P,X and P',X' are canonically conjugate pairs.
The first three constraints are primary and the last two
constraints are secondary and tertiary. There are no fur-
ther constraints as the constraint algebra closes.
Noether’s theorem applied to the local symmetry of
reparametrization invariance implies that the Hamiltoni-
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an vanishes and p'q'=0. The theory therefore exhibits a
hidden local symmetry in that there are five constraints
rather than the two implied by Noether’s theorem.
Theories based on powers of the curvature different from
one have only the two constraints’ associated with
reparametrization invariance. It would be interesting to
understand the three extra constraints as a local symme-
try of the scale-invariant Lagrangian.

The Noether charges associated with Poincaré symme-
try P¥,

M,uv=X[uPV]+Xl[uPlv] , (9)

form a representation of the Poincaré Lie algebra and
the values of Casimirs can be calculated from the con-
straints. The four-momentum squared and the Pauli-
Lubanski vector squared are zero. The helicity is the
coupling constant 4 of the curvature theory similar to the
way in which mass is the coupling constant of the arc-
length theory. The representation of the Poincaré group
is therefore irreducible.

We potentially have a new description of photons or
gravitons where both momentum and spin arise dynami-
cally from motion. To test whether such a description is
valid we must introduce interactions. One would like,
for example, to compute the bending of a single photon
in the gravitational field of the Sun. As it is not evident
how to gauge fix the hidden local symmetry in the
Euler-Lagrange equations, we will study the Hamiltoni-
an formulation of the curvature theory in a curved back-

RuvapX P X""PP=[(P—PT(X')),,(P—PT(X)),1X"“P".

ground spacetime g,,.

The Hamiltonian constraints of the arc-length theory
of paths and the area theory of surfaces in a curved
background can be obtained from the corresponding
flat-spacetime constraints by simply replacing the flat
metric 7n,, by the curved one g,,. Such a replacement,
however, is not correct for the curvature theory. The
canonical momentum P* does not transform like a con-
travariant vector and so simply replacing n,, by g,, does
not give generally covariant constraints. The combina-
tion

P,—PT(X"),, (10)
where
PT(X"),=P,TiX", (11)

does transform like a contravariant vector. The general-
ly covariant primary constraints are
P X'=0, P’X"?—h%=0,
(12)
(P—PT(X")) X' =0.
The secondary and tertiary constraints, respectively, are

(P—PTX)) P'=0,
(13)
(P=PT(X))*= RyvapX P X"“P* =0,

where the Reimann tensor contracted into the internal
angular momentum arises from the Poisson bracket

(14)

The Poisson bracket of the tertiary constraint with the last primary constraint gives

Ruvapy X" P X"PPX'"T — 4R, ,apX " (P = P'T(X")) ' X"*P"P

and so the constraint algebra does not close in a general
curved background spacetime. Although the constraint
algebra does close in the special case of isotropic space-
times where the Riemann tensor is proportional to the
appropriately antisymmetrized product of two metrics,
restriction to such spacetimes excludes the physically in-
teresting case of the Schwarzschild geometry. Further,
Poisson brackets lead in general to an infinite number of
constraints with arbitrarily high derivatives of the
Riemann tensor. Such a situation is inconsistent in the
16-dimensional phase space. Five constraints in the 16-
dimensional phase space account precisely for the
6 =16 —2x5 continuous degrees of freedom of a photon.
The mere fact that there are more than five constraints
in curved spacetime, much less an infinite number, im-
plies we do not have a viable description of the photon.
The inconsistency displayed here agrees with the well-
known difficulty of massless higher-spin fields coupled to
gravity® except that it is more extensive as it includes the
helicity-1 case. A physical basis for the inconsistency in
the curvature theory can be seen in terms of the famous

(15)

[

nonlocalizability of the photon® and higher-spin massless
particles. There are general arguments, both classical '°
and quantum mechanical,'' that there is no meaning for
the location of a single photon. Penrose and MacCallum
argue'® that an extension of the relativistic center of
mass to massless particles of nonzero spin results in a
three-dimensional region rather than a one-dimensional
world line. The nonlocalizability manifests itself in the
curvature theory through the hidden local symmetry. In
the gauge x°=2, the hidden local symmetry implies that
x' is a gauge-variant quantity and hence not an observ-
able. Because the photon does not have a well-defined
location in spacetime it does not have a well-defined
response to a local gravitational field. The nonlocaliza-
bility of the photon thus gives a physical picture of the
inconsistent coupling of the curvature theory to gravity.
The physical interpretation of the inconsistency sug-
gests that any theory that contains massless particles of
spin 1 or greater should exhibit a hidden local symmetry
rendering the position variable unobservable. Spinning
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particles or spinning strings do contain such particles and
the hidden symmetry is none other than the local super-
symmetry of the world line or world sheet. Gauge fixing
only reparametrization invariance leaves a residual sym-
metry of the local supersymmetry under which the posi-
tion is gauge variant and so unobservable. Note that the
bosonic string does not have spinning massless particles
at the classical level and so the classical constraints of
bosonic string theory do not exhibit a hidden local sym-
metry. On the other hand, the simplest spinning point-
particle theory contains only a massless spin-+ particle
and yet still exhibits a local supersymmetry. The local
supersymmetry here can still be associated with nonlo-
calizability as chiral spin- ¥ particles are also not localiz-
able'' and one can think of the simplest spinning particle
as arising from two chiral spin- & particles. Finally, cur-
vature theories’ with powers of & different from 1 do not
contain massless particles of spin greater than or equal to
1 and do not exhibit a hidden local symmetry. Such
theories can be consistently coupled to gravity. These
theories have only the two constraints reflecting the
reparametrization invariance of the action which is not
destroyed by the introduction of a curved metric.
Spinning particles or spinning strings can be coupled
consistently to gravity by superspace techniques. There
the manifest supersymmetry of the action implies that a
point in superspace does have a well-defined response to
the metric evaluated at a point in superspace. The su-
perspace action expanded in terms of component fields '
implies a nonminimal coupling of the Riemann tensor
contracted into the internal angular momentum. The
minimally coupled theory is inconsistent and the role of
the nonminimal term is to restore consistency. The anal-
ogy between the hidden local symmetry of the curvature
theory and local supersymmetry suggests that the incon-
sistency of the curvature theory might be overcome by
some analog of superspace techniques. However, the
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inability to understand the hidden symmetry as a local
symmetry of the action presents an obstacle to this ap-
proach.
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