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Decay of Ordered and Chaotic Systems
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We study the decay of classical systems with regular and chaotic dynamics by investigating the escape
of a particle from a container with a small hole. For the case of ergodic motion, we find an exponential
decay law, whereas the nonchaotic system decays according to a power law.

PACS numbers: 05.45.+b, 05.20.—y

In the last decade there has been much interest in the
classifiction of motion as chaotic or nonchaotic using
simple model Hamiltonians. An important question in

the case of finite systems is how a system, once excited,
decays. We are familiar with exponential decay laws for
single quantum states and more generally when there are
many external channels and the conditions for quantum
chaos exist. On a purely classical level, the dependence
of the decay laws on chaoticity has not been investigated,
to our knowledge. One expects exponential decay for
chaotic Hamiltonians, and perhaps nonexponential be-
havior for more ordered dynamics. We present here a
study for a system similar to the one considered by
Sinai which confirms this expectation.

We consider point particles moving in a rectangular
box bouncing elastically oA' the walls. This is an ideali-
zation of the physical situation of nucleons confined in-

side a nucleus, for example. At low excitation energies,
the nucleons have weak residual interactions with each
other, and their motion is governed mainly by a mean-
field potential. The quantum-mechanical realization of
this physical scenario results in the nuclear shell model
or, simpler, in the Fermi-gas model. Other physical
cases which could be idealized in the above way are
charged ions or electrons confined in a Paul trap. We
allow our system to decay by providing a small window
in one of the container walls through which particles are
allowed to escape. This is physically similar to the wall
and window formalism which was employed to describe

the influence of friction and nucleon exchange in nuclear

reactions. The interactions between particles are ideal-

ized by placing a stationary circular scattering center in-

side our container; this leads to ergodic motion. Physical
situations corresponding to this limit are nucleons at
high excitation energy inside a nucleus or atoms in a

highly excited complex molecule.
We first discuss the two-dimensional case. The exam-

ple of regular motion is then a point particle on a rec-
tangular billiard table. It moves under the inAuence of
elastic reflections on piecewise linear trajectories. Every
reflection ofl' one of the walls can be represented by the

linear map

p)(i + I )

pp(t +1)
T 1 0 Pi(i)
0 ~ I p2(i)

where the upper (lower) signs are to be taken in the case
of the collision with the walls at q~;„or q~ .,„(q2,„or
q.„,. „). The two Cartesian momentum coordinates are
here represented by pi and p2, and the spatial coordi-
nates are q~ and q2. It is clear from Eq. (1) that the en-

tire trajectory of a point particle in this system only visits
the four points (p ~ (0),p2(0) ), ( —

p~ (0),p2(0)),
(p ~ (0), —p2(0) ), ( —p ~ (0), p2(0) ) in momentum

space, where p~(0) and p2(0) are the initial momentum
conditions.

We can define the frequencies to, =
~p, (0) ~/(q;

—
q, ,„). The trajectory will be periodic in coordinate
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space, if col/cuq is in the set of rational numbers. How-

ever, the case of periodic trajectories is irrelevant for
practical physical systems with random initial momen-

tum conditions, because the rational numbers are a set of
measure 0 within the real numbers. It is of some con-
cern in the computer studies because the computer only
deals with rational numbers.

The trajectory of a particle confined to a rectangular
box becomes chaotic if a circular scattering center is

placed somewhere inside the box. We choose to put our
circle at the center of the box and choose its radius R
large enough such that the only trajectories which can
completely miss the circle are those with pq(0) =0 and
q2(0) E (R,qq,. „) or pl(0) =0 and ql(0) & (R,qi ~,„).
This creates a physical situation which is analogous to
Sinai's billiard. The resulting trajectories of the parti-
cles are chaotic.

The map for reflections oA the circle is given by

p, (i+1)
I

[q2(i)' —ql(i)'] [ —2qi(i)q2(i)i pl(i)
p2(i+ I) R2 [ —2q 1(i)q2(i)] [qi(i) —q2(i) ] p2(i) (2)

This map, as well as the map defined by Eq. (1), is of
course area preserving, because in an elastic collision the
kinetic energy is conserved.

Since the system described by this map is a K system
(positive II'olmogorov entropy, close orbits separate ex-

ponentially), the trajectroy is ergodic. ' Therefore the
time-averaged phase-space density is constant at every
point in the allowed region of phase space, which is a cir-
cle in momentum space and the entire coordinate space
area of the box excluding scattering center.

In Fig. 1, we present the results of our numerical
simulation of the two cases discussed above. In this
simulation, we calculated N(0) =10 events with ran-

dom initial conditions each for the chaotic and the regu-
lar case. The absolute value of the particle's momentum

p, the box side length I, and the mass m are irrelevant
and only result in a rescaling of the time variable accord-
ing to t mal/p. In both cases we chose p =2.5 and
m =1. The box dimensions in the chaotic case are
12x 12 with a circle of radius 4.5 in the center. Then the
total coordinate-space area available is A, =80.38. The
dimensions of the box without the scattering center are
adjusted such that the total area in both cases is identi-
cal. We use a quadratic box with side lengths 8.966.
Displayed in Fig. 1 are the number of particles which es-

caped through the hole of width h, =0.2 in a given time
interval, which we binned in units of 60.

For the chaotic case, we find an exponential decay

N(i) =N(0)exp( —r/r)

with an extracted decay constant r = 510. A few simple
considerations lead to the analytic calculation of this
constant. The number of particles leaving per time inter-
val is given by

N(r)=ap(r) ' d'p p e„= 2ap(r)p'&p, —

where e„ is a unit vector normal to the opening in the
surface, and the integration in momentum space is taken
over a circular ring with radius p and infinitesimal width

8p. p(t) is the phase-space density of particles. In the
case of ergodic motion, it is only a function of time and

not of any of the phase-space coordinates. It is in our

p(r) =N(t)/ft =iV(r)/2npbpA„.

Inserting this into Eq. (4) yields

N(r) =( —I/r)N(i),

(5)
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FIG. 1. Differential decay rates for the two classical bil-
liards of the same total area. The exponentially falling histo-

grarn represents the chaotic case, and the dots show the results
of the regular motion. In both cases, a total number of 10
events with random initial conditions as described in the text
was calculated.

r =RA /pA .

With the numerical parameters used in the calculation,
we obtain a value of r =505.6, in good agreement with
the graphically extracted value.

In contrast to this result, we find for the classical case
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a power-law decay 1O« ~ I i i ~ ~ 1 ~ I I ~ ~ ~

t

lim N(t) ~t(~ OO

(7)

with a numerically extracted value of X = 2, independent
of the container or window size. This implies that the
mean decay time diverges.

In retrospect, the power-law behavior for the regular
motion is understandable with the following heuristic ar-
gument. Since ip e„i is a constant of the motion, there
will be different characteristic decay times for different
parts of phase space, and, in fact, the decay rate is pro-
portional to ip. e„i. Within each momentum group the
decay should be exponential according to the above argu-
ments, because if we fix the momentum the total phase
space is identical to the coordinate space; and the motion
is ergodic there. Then the overall decay is given by
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N(t) - d p exp( ct i p
—e„i)

i z/2

exp( ctp cost/t) d—t/t4 -n/2

for ~ —~. (8)

t5, =L (2rD) ' (9)

We performed simulations with 10 events with p=l
and Ld =2 in each case and obtained power-law decays
for all numbers of dimensions considered. The numeri-
cally extracted decay constants were between —1.95 and
—1.85 with typical statistical errors on the order of
~0.1. In Fig. 2, we display our result for all cases. The
histograms in this doubly logarithmic plot are binned in

units of 200. In order to be able to visually distinguish
the curves, they were displaced by factors of 10 relative
to each other. The common power-law decay can be

Here c is some constant independent of p. Then the
differential decay law is the derivative, N(t)-t, as
observed in the model.

Our results can be extended to higher dimensions as
well. We chose as the container a D-dimensional hyper-
cube and the scattering center a D-dimensional hyper-
sphere. The window is a (D —1)-dimensional hyper-
cube. If we choose the ratio of the window "area" to the
container "volume" to be a constant independent of D,
then the result for the chaotic scenario remains un-

changed, and we obtain an exponential decay with the
same decay constant r.

With the regular hypercube we find a power-law decay
with the same power as in the two-dimensional case, ac-
cording to the considerations above. This last result we

verified by numerical calculations in 2, 3, . . . , 10 dimen-

sions. Here, we chose the ratio r =window-area/con-
tainer-surface-area ( =probability of hitting the window

with a given straight segment of the trajectory) to be a

constant independent of D. Then the window side length

hd relative to the cube side length Ld (which we also
chose to be a constant) is given by

103
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FIG. 2. Differential decay rates for the classical regular bil-

liard in different numbers of dimensions D. The different his-

tograms are multiplied by factors of 10 ' for better visual
separation.
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In this case, ati/cu. =ni/n wh2ere ni and n~ are integers
with no common factor. Then the trajectory only touches the
container walls in /V=2(ni+nq) points. If we cut a hole of
size d into one of the container walls, then the total decay
probability is given by P =1 —[(l.—/s)/I. ], where I.
=ql „,—ql, „+q „,—q2, . is the total surface length of

clearly recognized.
In summary, we have considered the simple case of

elastic reflections of point particles oA' container walls in

a billiard geometry, and we have obtained different de-

cay laws for the ordered (power-law) and the chaotic

(exponential-law) case.
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