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Percolation Model for Relaxation in Random Systems
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We have measured the magnetic relaxation of several Au:Fe alloys from 10 73 to 104 sec after remov-
ing an applied field. The quality and range of the data are sufficient to demonstrate significant devia-
tions from all functions previously used to characterize the dynamics of similar systems. A simple mod-
el, activated relaxation of dispersive excitations on a percolation distribution of finite-sized domains,
gives excellent agreement with the measurements and may provide a common link between fundamental

excitations and observed behavior in random systems.

PACS numbers: 75.50.Kj, 64.60.Ak

Some remarkably ‘“‘universal” empirical functions
have been used to characterize the dynamical behavior of
a wide range of random systems.'™ Dilute magnetic al-
loys* provide a canonical system by which these empiri-
cal functions may be tested. We have measured the
magnetic relaxation of Au:Fe alloys with iron concentra-
tions from 4% (“spin glass”) through 21% (‘‘random fer-
romagnet”). The quality and range of the data are
sufficient to demonstrate significant deviations from all
functions previously used to characterize the relaxation
in similar systems.>”'® A simple model for magnon re-
laxation on a percolation distribution of finite domains
gives excellent agreement with the observed behavior.
Because the model is based on general geometric con-
siderations, it is applicable to any random system with
dispersive excitations, and may provide a physical basis
for the universal aspects of dynamics in random systems.

Several investigators have previously considered the
role of finite domains in the dynamics of random sys-
tems.''"'* The primary distinction of our approach is
that we consider only dispersive excitations within fixed
finite domains; we find that local spin excitations,
domain rotation, and wall motion need not be considered
from 10 73 to 10* sec. We define a correlated domain as
a region where excitations share a common dynamical
phase factor, so that all spins within a domain have the
same average level of excitation. Assuming linear
response, the net relaxation is the probability that a
given spin belongs to a domain containing s spins (sn,),
times the probability that this domain has not reached
equilibrium, summed over all domains: M (¢) & X, (sn,)
xe ~"s'. The principal result of this Letter is that for
relaxation rates which vary exponentially with inverse
domain size (w, e Eef *, characteristic of finite-size
quantized dispersive excitations) these relaxation func-
tions provide excellent agreement with observed behav-
ior.

If a given spin is assumed to be correlated with at least
one of its neighbors with probability p, percolation
theory '>!® provides specific predictions for the distribu-
tion of finite domains. For p > p. (p. is the critical prob-
ability for bond percolation) in three dimensions,!”!8
(sny) 5" expl— (C's) 3], where C'« |p—p.|"° and
0=0.45. For activated relaxation of quantized systems

—8E/kgT . . .
at temperature 7,'° w, e ks . All dispersive exci-

tations in finite systems have an average energy-level
spacing (8E) which is inversely proportional to the num-
ber of particles in the system.?%2! This is simply a state-
ment that since s discrete levels fill a fixed bandwidth,
S8E =A/s (A depends only on the average interaction be-
tween spins, independent of domain size). Using x =C's,
the net relaxation becomes

M) =M,-j; x'%exp(—x¥)exp(—tw—e ~/*)dx ,

(1

where the adjustable parameters are C=C'A/kgT, the
initial response [3r(% )/21M;=3.518M;, and w— the
relaxation rate for the largest finite domain (smaller
domains have larger energy-level spacing and hence re-
lax more slowly). Although the average-sized domains
[x=(%2)>1 produce the predominant behavior, for
C> 1 the spectrum is extremely broad.

The phase diagram of Au:Fe includes several random
magnetic phases.?> All concentrations we have mea-
sured show qualitatively similar relaxational behavior.
Here we focus on three samples: SG8 (8.0% Fe) exhibit-
ed a spin-glass-like cusp at T, =28 K; CG12 (11.9% Fe)
had a sharp maximum at T, =39 K (characteristic of a
concentrated spin glass); whereas the field-cooled mag-
netization of RF20 (19.8% Fe) was featureless
throughout its random-ferromagnetic regimes. Relaxa-
tion of the thermoremanent magnetization was measured
using a SQUID magnetometer coupled to a high-speed
voltmeter. A magnetic field (H =3.6 Oe) was applied to
the sample while at an elevated temperature. The sam-
ple was then field cooled to the measurement tempera-
ture. After a specified wait time (7, ~10° sec), H was
removed and the magnetization recorded as a function of
time. Data were taken at 10-usec intervals from the mo-
ment H was removed, and at increasing intervals until
102-10* sec. The absolute magnetization was deter-
mined before and after each relaxation by moving the
sample between two counterwound coils.

The magnetic relaxation of CG12 at three tempera-
tures above T, is shown in Fig. 1. The solid curves are
the best fits using Eq. (1) over the range 10 ~*-10" sec.
The inset shows the deviations of the data from these fits.
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FIG. 1. Magnetic relaxation of sample CG12 at three tem-
peratures above the transition 7, =39 K. The solid curves are
the best fits using Eq. (1) over the range 10 ~*~10' sec. Extra-
polation to shorter and longer times reveals no systematic devi-
ation. Inset: Difference between Eq. (1) and the data. The
best fits by a simple power law (solid curves) are shown for
comparison.

For comparison, the best fits using a simple power law
(solid curves) are also shown. The validity of Eq. (1) is
confirmed by the fact that no systematic deviations are
observed, and that fitting over a reduced time range pro-
duces curves which extrapolate through the data at
longer and shorter times. Although it is difficult to ex-
perimentally determine the precise distribution of finite
domains, the distribution for p < p. invariably gives infe-
rior results, suggesting that the dynamical correlation
length is sufficiently long ranged to produce percolation,
even in dilute samples above their transition. The spin
waves in each finite domain are quantized with energy-
level spacing inversely proportional to the number of
spins. In the field-cooled state, the induced magnetic
moment of each domain is aligned with the field. When
H is removed the average internal energy of the domains
must increase from the field-cooled state to the zero-field
equilibrium. The quality of the fits indicates that other
relaxation mechanisms need not be considered.

The magnetic relaxation of CG12 at four tempera-
tures below T,, (Fig. 2) shows two distinct regimes of re-
laxation. It is natural to assume that there may also be
domains whose average internal energy must decrease
from the field-cooled state to the zero-field equilibrium:

M) =M,J; x'%exp(—x??)exp(—1wie T/ ¥)dx .
(2)

Here w4 is the slowest relaxation rate (the larger
energy-level spacing of smaller domains expedites energy
loss). This relaxation may be due to domains with pure
antiferromagnetic order, or domains whose induced mag-
netic moment was antialigned with H. At present we
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FIG. 2. Magnetic relaxation of sample CG12 at four tem-
peratures below T, =39 K. The solid curves are the best fits
using Eq. (1) plus Eq. (2) over the range 10 ~#~10? sec.

favor the antialigned picture since experimentally these
domains have similar energy-level spacing and size dis-
tribution. Least-squares fits by Eq. (1) plus Eq. (2)
from 10 ~* to 107 sec (solid curves in Fig. 2) show excel-
lent agreement over the fit range and generally extrapo-
late through the data at longer and shorter times. The
dominant source of deviation at long times is instrument
drift; however, some systematic slowing for ¢ > ¢,, is also
observed. For ¢t <t,, increasing ¢, produces a decrease
in C, confirming that waiting-time effects?**> may be
due to domain growth in the field-cooled state.?®

The magnetic relaxation of sample RF20 at 40 K is
shown in Fig. 3. This relaxation exhibits several complex
features which are accurately reproduced by Egs. (1)
and (2) (plus a constant base line necessary for this
more concentrated sample). Little relaxation occurs be-
fore 1/w- =30 usec. The locally steepest slope near
1/w - =5 msec [w+ =w + exp(£ C/x)] is due to the re-
laxation of the average-sized aligned domains. At 1/w4
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FIG. 3. Magnetic relaxation of sample RF20 at 40 K. The
solid curve is the best fit using Egs. (1) and (2). The complex
relaxational behavior is due to the relaxation rates of the
average-sized aligned (1/w- =5 msec) and antialigned (1/w+
=80 sec) domains, and the broad distribution from 1/w - =30
usec to 1/w+ =10 ksec.
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=80 sec the magnetization again decreases more rapidly
as the average-sized antialigned domains begin to relax.
Negligible deviation between the fit and this complex be-
havior demonstrates the extreme accuracy of the per-
colation model.

The relaxation rates of the average-sized domains for
SG8 and CG12 are shown in Fig. 4(a). Other physical
quantities such as the correlation length (&), initial ther-
moremanent magnetization per spin (M), and magnon
bandwidth (A) cannot be isolated from Eqs. (1) and (2)
because they are coupled by integration over the dummy
variable x. However, relative temperature dependences
may be obtained by using Moo« M,;(A/CT)"~? and
Eoc (A/CT)°" (where 7=2.2, 6=0.45, and v=0.88 are
percolation scaling exponents). For the physically
reasonable assumption of constant bandwidth, M and x
exhibit appealingly simple temperature behavior. The
initial thermoremanent magnetization per spin [Fig.
4(b)] decreases linearly up to the transition, indicating a
constant average energy-level spacing throughout this re-
gime. Extrapolation to zero magnetization (solid lines)
gives the temperature at which all magnons would be ac-
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FIG. 4. (a) Temperature dependences of the average-sized
aligned (w-, upper) and antialigned (w+, lower) relaxation
rates for SG8 (0) and CG12 (+); solid curves are guides for
the eye. Relative temperature dependences of (b) the initial
thermoremanent magnetization per spin (M,) and (c) the
correlation length (&) for these samples. Solid lines are the
best fits by the linear regimes below T, =28 K and 7, =39 K.

o

tivated, providing an estimate for A; we find 43 =2 and
46 =2 K for SG8 and CG12, respectively. Extrapola-
tion to zero temperature provides a relative measure of
the saturation magnetization. The strong concentration
dependence indicates significant randomness in the
ground state of dilute domains. The correlation lengths
[Fig. 4(c)] are a minimum at the transition (in contrast
to a divergence if this were a percolation transition).
Below the transition £ also decreases linearly with in-
creasing temperature, extrapolating to zero at 47 +4
and 49 + 2 K for SG8 and CG12, respectively.

Dilute Au:Fe was the first random system to exhibit a
sharp susceptibility cusp,?’ initiating interest in the pos-
sibility of a spin-glass transition. Indeed, some thermo-
dynamic transition may occur on the infinite backbone,
but the accuracy of Eqgs. (1) and (2) indicate that finite
domains dominate the relaxational behavior. Above T,
Eq. (1) implies that all domains are aligned with the
magnetic field. In the vicinity of T, half the domains
become antialigned. This picture is supported by the
fact that spectra in the vicinity of the transition (27.5
and 28 K in SG8 and 37.5 and 39 K in CG12) could
only be fitted using unequal fractions of aligned and an-
tialigned domains, suggesting a 5%-10% “‘transition”
width. Below T,, Egs. (1) and (2) indicate a well-
defined energy-level distribution within each domain;
randomness comes from size and orientational degenera-
cies. An applied field increases the internal energy of
antialigned domains; they are frustrated from aligning
with the field by interdomain interactions.

Various mathematical approximations to Egs. (1) and
(2) reproduce several of the empirical functions previ-
ously used to characterize relaxation in random systems.
Converting Eq. (1) or (2) to an integration over relaxa-
tion times, to second order in the exponent about its
maximum, gives a log-normal distribution.?® Using a
steepest-descents method valid for Cw —t > 1, Eq. (1) be-
comes a simple power law M (t) ~7 ~%?° A similar ap-
proximation for Eq. (2) (valid when Cw4+t<1) repro-
duces the Kohlrausch-Williams-Watts stretched ex-
ponential M (z) ~exp(—1¢#).’® Indeed, the best previ-
ously proposed functions invariably involve a power law
and stretched exponential. For instance, the product("7
M(t)~t ~%expl—(¢/1)?] [which has the same number
of adjustable parameters as Eqs. (1) and (2)] gives y2
values yielding In(y2/x?) of 0.18 £0.09, —0.06 £ 0.11,
and 1.0210.13 for samples SG8, CG12, and RF20, re-
spectively. Although both significant differences favor
Egs. (1) and (2), it is the simplicity of the model that is
most appealing. Previous theoretical expressions do not
fit as well; for example,'* M (t) ~[In(z)] ~®¥ has d>M/
d(Inz) 2> 0, which is not observed for ¢t < ¢, at low tem-
peratures in either SG8 or CG12.

In conclusion, a simple model for relaxation of disper-
sive excitations on a percolation distribution of finite
domains yields two mesoscopically exact relaxation func-
tions. Various mathematical approximations to these
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functions reproduce many of the empirical functions pre-
viously used to characterize dynamics in random sys-
tems. Magnetic relaxation measurements of Au:Fe
demonstrate significant deviations from the empirical
functions, but show excellent agreement with our per-
colation model. The model is not a microscopic theory,
but may provide a common link between fundamental
excitations and observed behavior. Indeed, stress relaxa-
tion in ionic glasses’' and dielectric susceptibility of
glass-forming liquids*? also demonstrate significant devi-
ations from all previously proposed relaxation functions,
but show excellent agreement with our model. *
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