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We define the relative index, Index(P, Q), for a pair of infinite-dimensional projections on a Hilbert

space to be the integer that is the natural generalization of dim(P) —dim(Q) in finite-dimensional vector

spaces. We show that the Hall conductance for independent electrons in the plane is the relative index
where P and Q project on the states below the Fermi energy for Hamiltonians that differ by a quantum

flux and the Fermi energy is appropriately placed. This approach is closely related to, and sheds light

on, Bellissard's interpretation of the Hall conductance as an index.

PACS numbers: 72.20.My, 02.40.+m

The physical conditions for the integer quantum Hall
effect were identified by Laughlin. ' Since then, two
mathematical frameworks that identify the integers with

topological invariants have been developed: The first

one, which has its roots in a work of Thouless, Kohmo-

to, Nightingale, and den-Nijs, identifies the Hall conduc-
tance with a Chem number associated to the adiabatic
curvature. The second, due to Bellissard, identifies it
with the index of a certain operator that arises in Connes
theory. As both frameworks are differential geometric
in character and ultimately reduce to redressing Kubo's

formula, it has been felt that they are related, and the
original motivation for our work was indeed to examine
this relation.

One of the things that makes such a comparison
difficult is the formidable machinery employed by Bellis-
sard and the Deus ex machina role played by Connes
theory of noncommutative differential geometry. For
this reason we felt that it would be desirable to rederive
Bellissard's results in a way that, though rigorous, is

motivated by intuition about the Hall effect rather than
operator algebra and noncommutative differential ge-
ometry. The outline of such a derivation is presented
below.

For reasons of space we shall not present a detailed
comparison of the Chem versus the index approach, and
rather state what we believe is one important conclusion,
namely, that they are complementary: The Chem num-

ber approach is the natural one for closed, multiply con-
nected multiparticle systems, while the index approach
captures important features of open, simply connected
and (up to now) single-electron systems. Further details
shall be given elsewhere.

The approach we describe below is motivated by the
following view of the Hall conductance: Let an

infinitesimally thin flux tube pierce the plane at the ori-
gin. The Hall conductance is the amount of charge
transported to infinity as the flux increases adiabatically
by a unit of flux quantum. For the case of the full lowest
Landau level, an explicit calculation described, for exam-
ple, by Laughlin' shows that one state is lost in accor-
dance with the unit Hall conductance of a full Landau
level. (If, instead, a unit of flux is removed, an extra unit
of charge is "sucked in" from infinity causing a charge
near the flux tube to be pushed to the next Landau lev-

el. )
The essence of this view is the comparison of two

infinite-dimensional projections: Let P denote the spec-
tral projection on the states below the Fermi energy for
the initial Hamiltonian and Q that for the final Hamil-
tonian. TrP TrQ ao, of course, as both count the
infinitely many electrons below the Fermi energy. In
finite-dimensional vector spaces

Tr(P —Q) =dim(P) —dim(Q)

counts the difference in dimensions, and in the case at
hand the analog of that should count the number of
charges transported to (and from) infinity as the flux in-

creases by a quantum unit.
Here we shall describe a natural generalization of Eq.

(1) to Hilbert space (infinite-dimensional, orthogonal)
projections so that P —

Q is compact. (P Q is compact, —
if its eigenvalues A.„O as n ~. ) We shall call the
relative index, denoted by Index(P, Q), theinteger which
is the infinite-dimensional analog of dim(P) —dim(Q).
The basic features of the relative index are described
below. We outline the proof that in the context of the
quantum Hall effect (P Q) is trace class (i.e.,—that(~) provided that the Fermi energy lies in a
gap, and recall Bellissard's observation that the analog
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of the left-hand side of Eq. (1) is Kubo's formula in dis-

guise. The paper concludes with observations regarding
how this framework could accommodate Laughlin's

theory of the fractional Hall eA'ect.

Basic to our definition of Index(P, Q) is the observa-
tion that the spectrum of P Q—within ( —1, 1) is sym-

metric with respect to zero. (There is no spectrum out-
side [ —1, 1], of course. ) That is, if —

1 & k & 1 is an ei-

genvalue of P Qw—ith multiplicity m(X) then —
A, is

also an eigenvalue with the same multiplicity. To see

this, note that by a simple computation

(P —Q) (P~ —Q) = —(Pi —Q) (P —Q),
(P-g)'+(P. -g)'=1,

(2)

(3)

where P~= 1
—P.—It follows from (2) that P& —

Q maps
the eigenspace of X to that of —X. From (3), which is

originally due to Kato, it follows that (Pl —Q) is

1
—X on the eigenspace with fixed X and so P& —

Q is

invertible if X ~+ 1, thus establishing our claim.
Armed with this, we define

Index(P, Q) —=m(1) —m( —1)

dim(RangeP fl Rangeg J )

—dim(RangegARangePJ )

Index (QP), (4)

where the last expression is the index of a map from the

range of P to the range of Q.
Suppose now that (P —Q)'"+' is trace class, i.e.,

P, ~X, ~

"+' & ~, then the analog of Eq. (I) is

Index(P, Q) Tr(P —Q) "+'. (5)

Index(P, Q) -Index(UPU, UQU"), (6)

with U unitary. In particular, it is gauge invariant.
Another fact is "linearity, " that is, if P —

Q and g —R
are compact, then

Index(P, Q) =Index(Q, R)+Index(R, P) .

This relation is a trivial consequence of Eq. (5) if the
diA'erences are trace class (n can be chosen 0), but by a
more complicated argument linearity holds for com-
pacts. This is important for the application where the

Incidentally, so far as we know, this gives the first proof
that for infinite-dimensional P and Q, if (P Q) " ' is-
trace class then the trace is an integer, a fact that ap-

pears to be new even for n =0.
Equation (5) also shows that the right-hand side is in-

dependent of n provided n is large enough. This is the
Hilbert-space analog of the identity Tr(P —Q) =Tr(P
—Q) " ' which holds in finite-dimensional vector spaces

by the cyclicity of the trace (which we do not have).
Because the spectrum is unitary invariant we clearly

have

[A(x, y) P 'P "dx
' p

—
1

dy& oo (10)

Taking U to be the multiplication by the unimodular
u(z), the integral kernel of P Q is—

P(z, z') [1 —u(z)/u(z')] .

For u(z) =z/~z~,

so the integral kernel decays essentially like I/~z~ near
the diagonal. Now provided there is decay away from
the diagonal, and in particular if

P(z, z') (C(I + ~z
—z'~) -'-',

it follows essentially by power counting that (P Q) ' is-
trace class.

It follows from Eq. (11) that if P —g is trace class
and if P has a suSciently smooth integral kernel and U a
gauge transformation then Charge(P, U) vanishes. (The
integral kernel of P Qvanishes on th—e diagonal. ) We
therefore learn that in this framework a nontrivial in-

teger in the quantum Hall eAect results from projections
that diAer by a compact but non-trace-class operator.
This requires that the system be "open" because, for
Schrodinger operators associated with a finite box, and
Dirichlet boundary conditions, P is automatically finite
dimensional, and the index is zero. The vanishing of the

diff'erences are, in fact, not trace class, in the interesting
cases.

In the context of the quantum Hall eflect we are in-

terested in spectral projections P and Q that are related

by a unitary gauge transformation U associated with a
flux tube carrying a unit of quantum flux. For example,
take for U the multiplication operator given by the uni-

modular function u (z) =z/ ~z ~
with z =x+iy and

Q= UPU—. Define

Charge(P, U) =—Index(P, UPU )

=Tr([P, U]U ) "+' =Index(PUP), (8)

provided n is such that (P Q) "—+' is trace class. The
first identity is simple, and the second is not. We shall
not make use of it here except to note that this is the
Bellissard-Connes index.

Combining Eqs. (6)-(8) we get

Charge(P, U") =n Charge(P, U),

which has the interpretation that n units of quantum flux

transport n times the charges transported by a single
quantum flux.

The basic tool to determine what power, if any, of
P Q is trac—e class is Russo's theorem, which (special-
ized to integer powers and self-adjoint operators) says
that A is trace class, p ) 1, if its integral kernel A(z, z')
satisfies
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relative index refiects the fact that the charge cannot
leave the box. This is the sense in which the framework
describes open systems.

It is clear that Charge(P, U) is invariant under defor-
mations of P as long as [P,U] remains compact, and, in

particular, as long as P satisfies Eq. (13). It follows that
between Hall plateaus, P must develop long tails. It is

instructive to compare this with what happens in the
Chem number framework. The latter gives nontrivial in-

tegers already for finite (but multiply connected) sys-
tems, where the basic mechanism that allows the Hall

u (z i )
dz~ dzzdz3P(z~, z2)P(zz, zi)P(z3qz)) 1—

u z2
1 ~

It is an observation due to Bellissard that if one takes
u(z) =z/(z( and if the Schrodinger operator is invariant
under magnetic translations (and if the integral kernel of
P has enough decay), then the integral over the u's in

Eq. (14) can be carried out explicitly by a nontrivial for-
mula of Connes. The resulting equation can be shown to
reduce to Kubo's formula for the conductance, on the
one hand, and to the Connes index, Index(PUP), on the
other hand. (Actually, Bellissard shows a more general
result that allows for a random background potential. )
The derivation of this result, as well as its extension to
situations without translation invariance, shall be dis-
cussed in Ref. 5. For our purpose it is enough to note
that there is this link between Eq. (5) and Kubo's formu-
la.

We now conclude with remarks about the fractional
Hall effect. In the Chem number approach (which is in-
trinsically a many-body theory) fractions arise from a
degeneracy of the ground state. Plateaus for fractions
then imply that these degeneracies are stable, which is
not the generic situation. Various authors ' ' ' con-
sidered mechanisms that could give such stability. On
the other hand, in Laughlin wave-function theory it ap-
pears that, depending on the choice of the underlying
two-dimensional manifold, the ground state can be either
degenerate or simple. As a consequence, some authors
have expressed the opinion that degeneracies are not an
essential ingredient of the fractional effect. '

The framework described above is intrinsically a one-
particle theory, for we have taken P to be the spectral
projection on the one-particle states below the Fermi en-
ergy. As such, it cannot accommodate the fractional
effect without some serious upgrading. In particular, we
do not know what replaces P in a many-body theory.
Nevertheless, the framework suggests what we believe is
an interesting mechanism to get fractions, that avoids
degeneracies, and appears to be in agreement with the
basic ideas in Laughlin. ' We have taken the Hall con-
ductance to be Charge(P, U), where U is associated with
a single quantum Ilux. By Eq. (9) we could just as well
have taken the Hall conductance to be Charge(P, U )/3.

conductance to change is level crossings rather than loss
of compactness. Kunz and Niu and Thouless exam-
ined this framework in the thermodynamic limit, and ar-
gued that P develops long tails between plateaus.

The condition in Eq. (13) can be shown to follow from
the fact that the Fermi energy lies in a gap. If the Fer-
mi energy lies in the region of localized states then Eq.
(13) holds by results of Frohlich and Spencer in the ab-
sence of magnetic field. The common wisdom suggest
that Eq. (13) holds also with magnetic fields.

It is natural to ask what is the direct interpretation of
Tr(P —Q)'. Explicitly it is given by

u(zz) u(zi)
u( z )iu (z ] )

(14)

Of course, if (P —Q) is trace class, this is still an in-
teger because the numerator is a multiple of 3. Howev-
er, it is possible for Charge(P, U ) =1, with P a spectral
projection and U unitary in situations where [P,U] has
bad decay properties while [P,U ] has good decay prop-
erties. A simple (one-body) example where this is the
case is to take P to be the spectral projection associated
to the lowest Landau level and U the unitary (z/~z~) '

choosing a branch for the cube root. One can imagine
that in the fractional Hall effect, the many-body analog
of Charge(P, U) would be such that Charge(P, U ) =1
with U associated with the quantum Aux. The conduc-
tance would then be —,'. For this to happen, it must be
that the analog of [P,U] would have long-range correla-
tion but not [P,U ]. This appears to be supported by the
ideas and calculations of Girvin and MacDonald, ' and
Read about the off-diagonal long-range order in the
Laughlin state. This could then lead to fractions without
appeal to degeneracies.
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