
VOLUME 6S, NUMBER 17 PHYSICAL REVIEW LETTERS

Equilibrium Structures of Si(100) Stepped Surfaces
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Atomistic calculations using the Stillinger-Weber interatomic potential show that stress relaxation can
lower the energy of a Si(100) stepped surface below that of the flat surface. Two types of elastic in-

teractions are identified: One is due to stress anisotropy which occurs only on single-stepped surfaces
and has a logarithmic dependence on ledge separation 1; the other is associated with ledge rebonding,
present in both singe- and double-stepped surfaces, and has a variation of l . On the vicinal Si(100),
single-layer ledges are predicted to be favored over double-layer ledges at low miscut angles with the
crossover occurring at about 1' at zero temperature, and at 3' at 500 K, in agreement with experiment.

PACS numbers: 68.35.Bs, 61.16.Di, 64.80.6d, 81.40.Ef

In the initial stage of epitaxial growth of semiconduc-
tor materials, the perfection of the substrate surface is

particularly relevant since it is the template for the
growth of the overlayers. The role of the surface step
ledges in controlling the initial nucleation process of
GaAs growth on Si has been recognized for quite some
time, ' and experimental observations of stepped Si(100)
have been made with LEED and scanning tunneling mi-

croscopy (STM). Interpretations of these findings
have been based mainly on the ledge energies obtained
from electronic-structure calculations using the tight-
binding approximation. Specifically, the SA ledge is
predicted to be more stable than the SB, and the DB
more stable than a pair of single-step ledges (SA +SB).
These results are obtained from calculations on thin
slabs of about twelve layers with semi-infinite stripe ter-
races separated by only a few atomic spacings. It was

first pointed out by Marchenko and Parshin ' that a step
ledge can induce a line distribution of force dipoles
which in turn give rise to elastic interaction between ad-
jacent ledges. Furthermore, Marchenko" has shown

that on a surface with alternating stress domains, stress
relaxation will lower the energy of the surface. The
single-stepped surface of Si(100) is such an example,
where the stresses on the upper and lower terraces are
not equal due to different orientations of dimerization.

Recently, Alerhand et al. ' have considered the effect
of elastic interaction on a single-layer step ledge for vari-
able ledge separations, and concluded that the Si(100)
surface will be the single-stepped surface whenever the
defect energy associated with ledge formation is offset by
the effects of stress relaxation. Extending these argu-
ments to the Si(100) vicinal surface, it was found that at
zero temperature a transition from a double- to single-
stepped surface occurs for miscut angles less than
-0.05'. ' At finite temperature a model Hamiltonian
was used to study ledge roughening; at 500 K the transi-
tion angle showed a fortyfold increase to —2 . '

In this Letter we report atomistic simulation calcula-

tion of energies of single- and double-layer ledges with
semi-infinite stripe terraces on Si(100). Using the in-

teratomic potential function proposed by Stillinger and
Weber' (SW), we find that at sufficiently large ledge
separations all three stepped surfaces SA, SB, and DB
have energies lower than the 2x 1 surface. The energy
lowering is due to stress relaxations associated with two

types of interaction, a relatively short-range interaction
generated by the force dipoles and varying as I, and a
longer-range interaction logarithmically dependent on /

induced by the difference in stress component across the
stress domains. Both the power-law and logarithmic
variations are found in the present atomistic calculations,
and the results serve to unify the different analyses of
ledge interactions based on elasticity. ' " The simula-
tion results also provide a new interpretation of existing
STM data on the relative stability of single- and double-
layer step ledges. ' In contrast to Alerhand et al. ,

'

we find that at zero temperature the single- to double-
layer ledge transition occurs at a miscut angle of —1'.
By extending their model Hamiltonian to include corner
effects, we show that at 500 K the transition occurs at
3', or a threefold increase.

We consider a surface with semi-infinite stripe ter-
races as depicted schematically in Fig. 1. Following the
structural models of Chadi, the single- and double-
stepped surfaces with the upper terrace dimerization axis
perpendicular to the step ledge are denoted as SA and
DA, respectively. The other two surfaces are denoted as
SB and DB. Atoms on the SA ledge are fully bonded,
while the lower-ledge atoms on SB and DA and the
middle-ledge atoms on DB all have a dangling bond.
The row of dangling bonds gives rise to rebonding by di-
mer formation with neighboring surface atoms. The re-
bonded dimers lie on the lower terrace in the case of SB
and DA; in DB, they lie on a middle terrace. These
structural features play an important role in determining
the energetics; they also control the different initial
states of stress in the ledge region. We take the dimen-
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FIG. 1. Schematic diagrams of the simulation cell for vari-
ous stepped surfaces. Hatched area represents four layers of
atoms fixed in their ideal bulk configurations.

sion L„ to be four atomic layers, L~ treated as variable,
and L, large enough so that bulk behavior is obtained
away from the surface. This is realized by having a
sufficient number of z layers in the calculation cell to al-
low atoms located immediately above the region of fixed
atoms to have the correct bulk energy (within seven

significant figures). With periodicity in the y direction,
the ledge separation I is equal to L~/2 and L» for the flat
and vicinal surfaces, respectively. We find that the depth
of relaxation in the z direction increases with terrace size
in the range of L~ from 6a to 102a, from 22 to 134 lay-
ers. Over this range the number of atoms in the simula-
tion increases from 492 to 54468.

The various stepped structures are relaxed through en-

ergy minimization by the conjugate gradient method.
The ledge energy is defined as X =LI '(E Ncb-
—L„L~c„),where E is the total energy, N the number of
atoms in the simulation cell, sb the energy of a bulk atom
( —4.33 eV), c„ the energy of the uniform reconstructed
2x 1 surface (1.33 eV/a ), and LI the length of the ledge
(2L„ for the flat surface and L„ for the vicinal surface).
The surface lattice constant a is equal to 3.84 A. The
range of ledge separation spans from 10 to 200 A. As
shown in Fig. 2 the ledge energy decreases with increas-
ing I in all cases. The decrease over the range studied is
comparable to thermal energy kcT per ledge atom at

FIG. 2. Ledge energy vs ledge separation for various struc-
tures on the flat surface. Simulation results are shown as sym-
bols; solid lines are fits discussed in the text. The unit of a is

the surface lattice constant.

room temperature. Since A, is defined with respect to the
flat surface, we observe that all the stepped structures
have lower energies than the 2 x 1 surface beyond a ledge
separation of -7a. This crossover occurs first for SA,
then DB and SB. We note that at small I, SA is the
lowest in energy among the three structures, and at large
I, SB is the lowest. Although not shown in Fig. 2, we
have also studied the DA ledge. While its behavior is
similar to DB, the energy associated with broken bonds is
so high ( 160 meV/a) that X is positive over the entire
range of ledge separation studied.

In the case of SA we see that over the two decades of I
values, the simulation results show a logarithmic varia-
tion. Marchenko has given a general argument based on
elasticity theory showing that when two phases of
different surface stress exist, the deformation (strain-
field) energy varies logarithmically with the dimension
separating the two phases. " By fitting our data by the
form kn

—k in(l/za) (see Table I), we obtain X =9.07
meV/a, which is in reasonable agreement with the value
of 11.5 meV/a obtained using electronic-structure calcu-
lation with tight-binding approximation. ' In the case of
DB, we can observe a relatively strong repulsive ledge-
ledge interaction at small ledge separations. Fitting the

Type

TABLE I. Excess ledge energies (meV/a).

Stepped surface
SA
SB
DA
DB

Vicinal surface
SA +SB
DA
DB

1.88 ~ 0.19
—11.16+ 0.67
160.68+ 0.15

—42.44+ 0.36

—9.29 ~ 0.84
160.64 ~ 0.07

—42.43 w 0.67

—9.07 ~ 0.11
—9.07

—9.32+ 0.18

626.52 ~ 17
524.75 w 11

1417.30+ 19

727.81 ~ 65
602.86 ~ 2.33

1271.70 ~ 21
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The value of A, in this case is taken to be the same as in

SA because of the purely logarithmic variation in the
latter. Examining the atomic configuration of all the
ledges we conclude that the force dipole is induced by
ledge rebonding.

Thus far we have only discussed the ledge energies on
the flat surface. We present next results calculated for
the vicinal surface. In Fig. 3, both stress-domain and
force-dipole interactions are observed on the single-
stepped vicinal surface (SL) composed of alternating SA
and SB ledges, and only force-dipole interaction is ob-
served on the double-stepped vicinal surfaces (DL).
Therefore, qualitatively the behavior on a vicinal surface
is the same as that on a flat surface. We then fit the SL
data by Eq. (1) and the DL data by a I variation (see
Table I). The following points of consistency should be
noted. The values of A,o(DL) on flat and vicinal surfaces
are identical to within the estimated uncertainty. Xo(SL)
on the vicinal surface is the same as the addition of ko

for SA and SB ledges on the flat surface The c.oefficient
of the stress-domain interaction A. is also identical on
flat and vicinal surfaces. In contrast, the coefficient for
the dipole interaction Ad is different for the two surfaces.
Since the moments created at the ledges on flat and vici-
nal surfaces have opposite signs, this can result in

different kq values.
In Fig. 3 a crossover is seen between the ledge energies

of DL vicinal surfaces composed of DB ledges, and those
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FIG. 3. Ledge energy vs single-layer surface terrace size I
for various vicinal surfaces. The scale of the miscut angle is

drawn at the bottom of the figure. Simulation results are
shown as symbols; solid lines are fits discussed in the text.

data by an inverse power law we obtain a =2.17+ 0.04,
which is close to the theoretical value of 2 for the force-
dipole interaction between ledges as analyzed by linear
elasticity. ' We refit our data of DB (also data of DA)
by the form ko+ky(a/l) . For SB, we note the presence
of force-dipole interaction in addition to stress-domain
interaction. Thus we fit the data by

A, =Xp A, ln(l/na)+Ed(a/I)

of SL. The miscut angle 8 is related to I by tan8
=(J8!/a) '. At angles above 1', DL is seen to have
the lower energy, the inequality being reversed at angles
below 1'. This crossover behavior is consistent with ex-
perimental observations of single-stepped surfaces at
low miscut angles and double-stepped surfaces at high
miscut angles. Recently Alerhand et al. "have indicated
that at zero temperature the crossover will occur at a
much lower angle of 0.05', which corresponds to the
single-layer terrace size I of about 400a. This result is

based on the assumptions that the force-dipole-
interaction effects can be ignored and that the value of
the ledge formation energy A,o can be taken from an
electronic-structure calculation. The coefficient of the
stress-domain interaction A, in their calculation is com-
parable to ours. In arriving at our result of 1' we find

hat. p=1t.o(SL) ko(DL) 33 meV/a, which is less than
one-third of the value of 110 meV/a obtained on the
basis of Chadi's calculation. In that calculation, thin
slabs of about twelve layers with 5.4' miscut angle were
used. In our work we have found a significant depen-
dence of 1i,o on slab thickness. In going from a twelve-

layer-thick slab to a slab thick enough for energy conver-
gence (-40 layers) we found Xo (using the SW paten-
tial) to decrease by a factor of -2. Thus the effect of
slab thickness would lower the 110-meV/a estimate to-
ward our value. Furthermore, we found that the contri-
butions from the elastic interactions to the ledge energy
of a vicinal surface with such values of miscut angle are
appreciable. At 5.4', we obtain hX =21.74 meV/a.

We now consider finite-temperature eff'ects on the
crossover between vicinal single- and double-stepped sur-
faces. In the case of SA, both rebonded and nonbonded
SB ledges can form as a result of thermal roughening.
The former will give rise to a dipole-dipole interaction
(hs-60 meV/a) and the latter to the presence of dan-

gling bonds (he-400 meV/a). In the case of SB, the
formation of SA ledges (separated by 2a) requires an

energy of about 6.3 meV/a. In the case of DB, the for-
mation of DA also induces dangling bonds, while the for-
mation of SA and SB will require less energy but more
ledges will be created. As a result, the only low-energy
excitation is the roughening of SB. We generalize the
fluctuation model proposed by Alerhand et al. '

by in-

cluding the energy cost of the creation of corners in a
jagged ledge. Our Hamiltonian has the form

where h; represents the fluctuations of the ith segment of
the ledge front in units of the dimer length (2a) relative
to its position at zero temperature. A, & is the energy cost
per unit length of a ledge created in the perpendicular
direction (=6.3 meV/a). The spring constant is x =X /
8(l/a) +3k'/16(f/a) . The first term has its origin
from the strain energy associated with the stress-domain
interaction and the second term is associated with the
force-dipole interaction, as described in Eq. (1). (In the
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FIG. 4. Phase diagram of the vicinal Si(100) stepped sur-

face. Dashed line a represents the result obtained by repeating
the calculation of Alerhand et al. (Ref. 13) but excluding n' in

the spring constant x. Dashed line b represents the calculated
phase boundary without the inclusion of corner energy. Inset:
The atomic configuration with ledge corners. Solid and open
circles represent atoms on the top and second layers, respec-
tively.

The phase boundary is then given by

h,kp kkt T 1nZH 2)i. [n (I//ra )

+ [kg(SB) —
A.d(DB)](a/2l) =0. (3)

Figure 4 shows the calculated phase diagram. From 400
to 500 K, the crossover angle has the value from 2.5' to
3'. The averaged fluctuation size (h )'/ on a surface
with a 0.5' miscut angle is calculated to be 50a and 60a
at 400 and 500 K, respectively, which agrees with experi-
mental observation.

In summary, we have demonstrated the important role
of surface stress relaxation in determining the energies of
single- and double-stepped Si(100) surfaces. Two types
of ledge-ledge interactions are involved, a stress-domain
interaction due to surface-stress anisotropy and a force-
dipole interaction due to ledge rebonding, each having its

own characteristic variation with ledge separation. The
simulation results also show' that the mechanism of en-

ergy lowering on these stepped surfaces is indeed the

spring constant x in Ref. 13 the factor /r should not ap-

pear. ) s, is the creation energy of a corner in a jagged
ledge. An energy calculation using the SW interatomic
potential yields s, =54 meV. ' The corresponding parti-
tion function ZH can be calculated using the transfer-
matrix method with the matrix taking the form

( (

—ah2/2kgT —k~(h —h')/kgT

—2a, [ I
—6(h —h

' ) 1/ka T —
K h

' /2k g T
[ h

y q

stress-relaxation process first pointed out by Marchen-
ko' '' and later elaborated upon by Alerhand et al. '

Our results provide a consistent treatment of the compet-
ing eff'ects between local bonding and elastic interactions
regarding the engergetics. This consistency is shown to
be important in the prediction of relative stability of
single-layer and double-layer ledges. While strain-field
eA'ects derived from continuum theory appear to mani-
fest on an essentially atomic level, proper inputs from
microscopic considerations are crucial for a quantitative
description of the phase diagram.
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