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Kinetic Theory of Laser Filamentation in Plasmas
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The classical theory of laser thermal filamentation in a homogeneous plasma has been extended to in-
clude the effects of nonlocal electron heat transport. The new theory reduces the instability threshold
and predicts an optimum perturbation wavelength that maximizes the spatial growth. Theoretical pre-
dictions suggest that the thermal mechanism, rather than the ponderomotive one, may explain the exper-
imental observation of filaments by Young et al. [Phys. Rev. Lett. 61, 2336 (1988)]. In general, for con-
ditions typical of inertial-confinement fusion, the thermal filamentation instability is expected to dom-
inate.

PACS numbers: 52.40.Nk, 42.65.Jx, 52.25.Fi, 52.35.Nx

The study of the laser filamentation instability is of
particular importance to inertial-confinement fusion
(ICF). The filamentation instability results from spatial
modulations in the incident laser intensity profile that
give rise to changes in the plasma refractive index,
which, in turn, can amplify the initial level of modula-

tion. Resultant high-intensity filaments can then aggra-
vate other deleterious laser-plasma instabilities.

The filamentation can be identified as either pondero-
motive or thermal, depending on whether the changes
in refractive index are caused directly by the laser pon-
deromotive force or indirectly by inverse-bremsstrahlung
heating, respectively. In this Letter, the linear theory for
thermal filamentation is extended to include the effects
due to nonlocal electron heat transport. The improved
transport treatment predicts heat-flux inhibition at short
perturbation wavelengths, which then allows for higher
temperature, density, and refractive-index modulations.
The resulting theory substantially modifies the classical
results by reducing the instability threshold and giving
rise to an optimum perturbation wavelength that maxim-
izes the spatial growth. In contrast, theories based on

classical heat flow yield constant growth rates over a
wide range of wavelengths. Theoretical predictions also

suggest that the thermal mechanism should dominate
over the ponderomotive one for most cases of interest to
ICF. Specifically, the new kinetic theory provides an al-
ternative explanation for experimental observations of
filaments such as those recently reported by Young et
al. 4

The stability analysis follows essentially the approach
adopted in previous articles. We consider the growth
of a plane electromagnetic wave of amplitude E,

xE cos(koz tol ),
subject to a small perturbation e with y dependence of
the form

x[e i cos(koz —tot ) +e2 sin (koz —cot ) ]exp(Kz —iky ),
where k is the perturbation wave number and K is the
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where n/n, is the ratio of background to critical density
and ni is the perturbed density. These equations are
then coupled to the linearized momentum and energy
balance equations, respectively,
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where S is the background inverse-bremsstrahlung heat-
ing rate, tc is the thermal conductivity, T~ is the per-
turbed temperature (assumed equal for electrons and
ions), and v„,/v, (which is the term responsible for the
ponderomotive filamentation) is the ratio of the electron
oscillatory velocity in the electric field E to its thermal
velocity.

Before solving Eqs. (1)-(3) it is important to consider
the validity of the heat flow model in Eq. (3). Classical-
ly, tc would be the Spitzer-Harm (SH) conductivity
asH. However, it has been shown that under conditions
where the temperature scale length is shorter than some
appropriate electron mean free path k, (to be defined
later), the SH formula breaks down. Under such cir-
cumstances, it is more appropriate to model the energy
balance using the electron Fokker-Planck (FP) equa-
tion. However, instead of solving the FP equation for
every stability analysis, it is much more convenient (and
less costly in terms of computer time) to appropriately
modify r so as to account for kinetic transport effects.

spatial growth rate. (The directions between the pertur-
bation wave vector and the electric-field polarization are
chosen so as to maximize K. ) Substituting this form of
electric field into the electromagnetic wave equation in a
plasma, and using the slowly-varying-envelope approxi-
mation, we obtain (assuming K « k « k 0)
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In order to accomplish this, the FP code SPARK has
been adapted to calculate T~/T for a given e~/E, in an

initially homogeneous plasma. The eA ective conductivity
is then calculated by defining

2S e i/&
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The code is run with a sinusoidal spatial modulation (of
arbitrary amplitude) in the laser field until a steady tem-
perature modulation is achieved. As expected, in the
limit of large wavelengths (or small k), x rcsH. In the
small-wavelength limit, however, it is found that

Such a phenomenon, which is commonly
known as flux inhibition, occurs as a result of nonlocal
transport of heat-carrying electrons (with kinetic ener-
gies of about 7 T) across several wavelengths. Since
these high-energy electrons cannot equilibrate instan-
taneously with the thermal electrons (by virtue of their
relatively low collisionality) they are able to establish a
smoother density gradient in phase space than the
thermal component, and hence, reduce the effectiveness
of the heat Aow. This type of effect, first identified by
Bell' in the context of ion waves, has also been demon-
strated in two-dimensional thermal transport simulations
using SPARK.

The spectrum of x/xsH as a function of kX, has been
obtained and plotted in Fig. 1. Here, x has been ap-
propriately normalized by defining k, = T /4nne
x (Z+1) '~ InA as the effective delocalization length (or
stopping length) of an electron. Such a definition ac-
counts for the balance between electron spatial diA'usion

and thermalization. '' A very accurate fit to the data
points in Fig. 1 is obtained by using x/xsH
=[I+(30k',, ) ~ ] ' (see solid curve). In contrast, a
Fourier analysis of the heat-flow formula proposed by
Luciani, Mora, and Virmont' would yield
x/xsH = [1+(30k', , ) ] ', which has an incorrect
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FIG. 1. Ratio of effective conductivity rc to Spitzer-Harm
conductivity xsH as a function of kX„where k is the perturba-
tion wave number and X, is the electron delocalization length.
Solid circles correspond to spARK data, and the solid curve is a
numerical fit to that data.

asymptotic dependence for large kX, (see also Ref. 9).
It must be emphasized that the heat-flow reduction de-

picted in Fig. I cannot be adequately modeled by the
usual flux-limiter method, ' where the magnitude of the
classical heat flow q = —xsHVT is limited to some arbi-
trary fraction f of the free-streaming heat Aow

qp
=nmv, ' through the formula x/xsH=[1+~Iq/fqI(]
This is due to the fact that the flux limiter depends on
the local temperature scale length T/~VTI whereas the
actual heat-flow reduction should depend on the global
temperature scale length k '. Moreover, since the tem-
perature perturbation in the stability analysis is assumed
to be infinitesimal, )q/fq/~ &&1, which makes the flux
limiter virtually inactive.

The growth rate based on Eqs. (1)-(3) and the
modified K is given by
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where e=l —n/n„, and (using the notation adopted in
Ref. 14) I Fpk =(k,. „)r can be derived which maximizes K, i.e. ,
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In the limit as 30k'.,«1 and y~ =0 (i.e., no ponderomo-
tive effect) we recover the classical dispersion relation
for thermal filamentation, ' which yields a maximum
growth rate in the limit as k 0, i.e.,
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In the kinetic limit (30k', »1), an optimum value of
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The optimum growth rate for ponderomotive filamenta-
tion can be obtained by setting yT =0 (thus making it in-
sensitive to nonlocal transport efl'ects), and is found to
b 214
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with

co n(k.,„),=-
c n,

I/2

(7)
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To illustrate the results presented so far, let us consid-
er the recent experiment by Young et al. , designed to
demonstrate the occurrence of laser filamentation. Us-
ing their experimental conditions (i.e., I =4.2 x 10'
W/cm, T=0.8 keV, n/n, =0.1, 11.1„„„=1.06 pm, Z
=3.5, and k =k,„pI =1500 cm ') K is plotted as a func-
tion of k in Fig. 2. Here, the improved theory for
thermal filamentation (curve a) clearly enhances the
growth rate well above the classical value (curve b), and
gives rise to a well-defined optimum K (as opposed to
fairly constant growth as k 0). This is not surprising
since the experimental conditions correspond to the ki-

netic limit of the instability, i.e., k, „pIA,,= 2.7 and
Ir/IcsH=2. 8x10 . One should also note by comparing
with the ponderomotive filamentation result (curve c)
that (Km.,„)T" /(K,. „)p-3 and k„p,—(km, ,) T"

—(k .,„)p. Thus, the conclusion reached by Young et
al. , that their experiment gave direct evidence of pon-
deromotive filamentation needs to be revised. Their con-
clusion was in part based on a threshold condition, arbi-
trarily defined as one e-fold increase in laser intensity
modulation, which for a plasma of length L implies
2KL =1.' Such a criterion, however, fails to account for
the light intensity that is required to produce the level of
density modulation bn/n needed for experimental obser-
vation. Indeed, a simple estimate of density modulation
using pressure balance (neglecting thermal eAects), i.e. ,

hn/n =1 —exp( —yp), predicts intensities of —10'

T
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FIG. 2. Plots of spatial growth K (cm ) as a function of
perturbation wave number k (cm '), for, curve a, thermal (ki-
netic theory); curve b, thermal (classical theory); and curve c,
ponderomotive instability

W/cm in order to yield the 10% modulation observed in
Ref. 4. Since L =300 pm, this implies at least a factor
of 10 (or greater than two e-fold) increase in laser inten-
sity. Therefore, based on linear growth rates, the new ki-
netic theory suggests that the thermal filamentation
mechanism may be the more likely candidate to explain
the results. For a more definitive conclusion, however,
the self-consistent time evolution and nonlinear satura-
tion of the filaments would have to be taken into ac-
count.

In general, comparisons between (K,,„)T" and
(K .,„)p may be obtained by expanding Eqs. (5) and (6),

(K )" = 1.98 x 10
(lnA) ' ZI n

7/8T7/4~3/4(I + I/Z) 1/2

' 5/4
—Ipm

(K .,„)p =2.93 x 10
~lasers n

eT(1+ I/Z) n,
pm

where p=(Z+0.24)/(1+0. 24Z); I is in units of 10' W/cm, T in keV, and X in pm. Using Eqs. (4) and (7), the
respective optimum perturbation wavelengths (X,. „=2/r/k, . „)are found to be

e3/16T7/8(1+ 1/Z) I/4/1/2 y3/8
(~m x)aT I 5 0

( I/4 I/2 3/8(lnA Z I n
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pm.

For conditions typical of current direct-drive spherical
implosion experiments, i.e., I = 10' W/cm (single beam
intensity), T=1 keV, n/n„=0. 1, and A, 1.„„,=0.35 pm,
the predicted growth rates and optimum wavelengths
have been calculated for Z=3.5 and 35. These are
displayed in Table I, together with the laser attenuation
rate K,b,

' which has been neglected in the present sta-

bility analysis. Since K a„))K;b, this last assumption is

probably justified. Also, the original assumption that
K«k «0 is well satisfied for the conditions considered
here.

A criterion for kinetic eAects to dominate is that
k ) k„=(30K,) ' (see Fig. 2), or in terms of wave-
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TABLE I. Instability growth rates, laser attenuation rates,
and optimum wavelengths, for Z =3.5 and 35.

(K „„)rs"(pm ')
(K ., )y"' (pm ')
(it' „)p (pm ')
(it...)f'l(it ...),
K,g (pm ')
(k,„)rFP (pm)
(a .,„)„(pm)

Z =3.5

5 67x10
5.26 x 10
8.86 x 10-'

5.93
5.3 x10

17.6
36. 1

Z =35

4 18x10
3 71x10
1 11x10

33.5
5.3 x 10

6.65
32.6

length,

X &X, =60~1,

lnA(Z+1) ' '

Once again, for the same typical ICF conditions,
A, , -676 pm (for Z =3.5) and X, -239 pm (for Z =35),
so that one would expect the kinetic regime to prevail
over a wide range of wavelengths. With this being the
case, one would also expect that (X,. „)T" ( (k .,„)~, and
not the other way around as has been previously predict-
ed 1, I4

In conclusion, a new theory of laser filamentation has
been derived that takes into account nonlocal electron
transport. The predicted reduction in the electron
thermal conductivity at short perturbation wavelengths
allows for enhanced temperature and density modula-
tions, which in turn enhance the growth rate of the laser
thermal filamentation. For typical ICF conditions, the
theory also suggests that the thermal mechanism would

dominate over the ponderomotive one. This has been il-

lustrated by correlating the growth-rate predictions with

a recent experiment.
This work was supported by the U.S. Department of

Energy Division of Inertial Fusion under Agreement No.
DE-FC03-85DP40200 and by the Laser Fusion Feasibil-

ity Project at the Laboratory for Laser Energetics which
has the following sponsors: Empire State Electric Ener-

gy Research Corporation, New York State Energy
Research and Development Authority, Ontario Hydro,
and the University of Rochester.

'W. L. Kruer, Comments Plasma Phys. Controlled Fusion 9,
63 (1985).

~P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522
(1973).

M. S. Sodha, A. K. Ghatak, and V. K. Tripathi, in Progress
in Optics, edited by E. Wolf (North-Holland, Amsterdam,
1976), Vol. 13, p. 169.

4P. E. Young, H. A. Baldis, R. P. Drake, E. M. Campbell,
and K. G. Estabrook, Phys. Rev. Lett. 61, 2336 (1988); P. E.
Young, Comments Plasma Phys. Controlled Fusion 12, 53
(1988).

sL. Spitzer, Jr. , and R. Harm, Phys. Rev. 89, 977 (1953).
D. R. Gray and J. D. Kilkenny, Plasma Phys. 22, 81

(1980); A. R. Bell, R. G. Evans, and D. J. Nicholas, Phys. Rev.
Lett. 46, 243 (1981).

7E. M. Epperlein, G. J. Rickard, and A. R. Bell, Phys. Rev.
Lett. 61, 2453 (1988).

8E. M. Epperlein, G. J. Rickard, and A. R. Bell, Comput.
Phys. Commun. 52, 7 (1988).

E. M. Epperlein, in Proceedings of the Topical Conference
on Research Trends in Nonlinear and Relativistic Eff'ects in

Plasmas, San Diego, California, February 1990 (to be pub-
lished).

'oA. R. Bell, Phys. Fluids 26, 279 (1983).
''J. R. Albritton, E. A. Williams, I. B. Bernstein, and K. P.

Swartz, Phys. Rev. Lett. 57, 1887 (1986).
' J. F. Luciani, P. Mora, and J. Virmont, Phys. Rev. Lett. 51,

1664 (1983).
' R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev.

Lett. 34, 721 (1975).
'4A. J. Schmitt, Phys. Fluids 31, 3079 (1988).
'5T. W. Johnston and J. M. Dawson, Phys. Fluids 16, 722

(1973).

2148


