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Statistical Mechanics of Euler Equations in Two Dimensions
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We formulate the statistical mechanics of a two-dimensional inviscid incompressible fluid in a manner
which, for the first time, respects all conservation laws. For a special case, we demonstrate that a mean-

field theory is exact. A consequence of our arguments is that, in an inviscid fluid evolving from initial
conditions to statistical equilibrium, only the energy and certain one-body integrals appear to be con-
served. Our methods may be applied to a variety of Hamiltonian systems possessing an infinite number
of conservation laws.

PACS numbers: 47.20.—k, 05.20.Gg, 52.25.Kn, 92.90.+x

Kirchoff' observed that the equations of motion for
point vortices in a two-dimensional, inviscid, incom-
prehensible fluid can be derived from a Hamiltonian:

taining the fluid. These quantities are conserved since

2 n 2 nd rco"(r) = d rnco" '(r) +u Vco =0.
dt40 4tt

The conjugate variables are the coordinates of the ith
vortex x;,y; and we use the notation

u =V x tlt = (ti~, tlr,
—8„tlt), co =V x u = —V tlt,

where to is the (scalar) vorticity field, u is the velocity
field, and tlt is the stream function. A substantial body of
work is based on the premise that the properties of this

system, the point vortex gas, have implications for the
flow described by the Euler equations. In particular,
given a Hamiltonian it is natural to ask about equilibri-
um properties, using the methods of statistical mechan-
1cs.

The evolution of large-scale coherent structures (or
blobs) is an oft-noted feature of two-dimensional fluid

flow. The notion that blobs might be a simple equilibri-
um phenomenon was suggested by Onsager. He point-
ed out that in bounded regions and at high energies the
vortex gas, with Hamiltonian (1) and all ~to;

~
=coo, gives

rise to clusters of vortices of the same sign. Onsager ar-

gued that the bounded phase space implies that above a
certain energy the number of states available to the gas
decreases as a function of energy, giving rise, at least for
a finite number of vortices, to "negative temperature"
states.

While interest in this system has surfaced on many oc-
casions since Onsager's proposal, unresolved problems
remain. For example, questions have been raised as to
whether negative temperatures and blobs persist in the
thermodynamic limit. Onsager himself was uncertain
how the statistics of point vortices applied to the more
familiar situation in which initial conditions specify a
continuous distribution of vorticity. A related issue con-
cerns the proper treatment of the infinite number of in-

tegrals of motion in two-dimensional Euler flow:

J„d r co"(r) for integer n, where 0 is the region con-

(3)

For n =2, this integral is known as the enstrophy.
The point vortex model represents a singular case of

Euler flow, since constants of motion with n & 1 involve

powers of delta functions. A natural way to go about
eliminating this defect is to write down a partition func-
tion incorporating the constraints as is usual in statistical
mechanics:

ttttt

Stlrexp d r ——(Vtlt) +pa„co"(r), (4)
4 4 0

where the constants a„, n ~ 1, and I/T are Lagrange
multipliers. In taking this approach, Kraichnan discard-
ed all constants of motion except for the energy and the
enstrophy; however, integrals of other powers of the
vorticity cannot be neglected in the study of long-
wavelength properties of Euler flow in a compact
domain.

In this paper we construct a theory of statistical equi-
librium for the two-dimensional Euler fluid which in-

corporates all constants of motion. The equilibria gener-
ically feature blobs. We find that in a fluid evolving
from some initial condition to statistical equilibrium,
only the energy and integrals linear in the vorticity ap-
pear to be conserved. All other constants, including the
enstrophy, are found to be altered. This situation reflects
the fact that averages of such quantities over a finite
area need not coincide with their unaveraged values.

A symmetry of the Euler equations enables us to in-
clude all constants of motion in our statistical mechanics.
The invariance of physical quantities under smooth
area-preserving coordinate reparametrizations (the
group of area-preserving diffeomorphisms) leads, in two
dimensions, to local conservation of vorticity. Integrals
over 0 of any smooth function of the vorticity are con-
served by the flow; these quantities are the Casimirs of

1990 The American Physical Society 2137



VOLUME 65, NUMBER 17 PHYSICAL REVIEW LETTERS 22 OCTOBER 1990

I

d r d r'co(r)co(r')In~r —r'~.
4~~ n ~o (5)

We next write down a canonical partition function:
f2) roexp[ —%f(ro)/T]. The superscript g refers to the
fact that we integrate over configurations which have a
given vorticity density function g(co) =dG(co)/dro. For
purposes of counting states, we need to regularize our
functional integral. We do so by incorporating a lattice
spacing, a. Our Hamiltonian becomes

a4P ' = — g ro; co, ln ~r;
—r, ~+ (self-energy),4' g+J

(6)

where the i,j take values on a lattice of side a in the re-
gion 0, and the co; are averages of co(r) over lattice
boxes of side a. The total self-energy scales as a In(a )
and so its contribution to the Hamiltonian vanishes as
a 0. Up to a factor of a, our regularized Hamiltoni-
an looks like that of the point vortex gas (1), but it is

distinguished by the underlying lattice, which is required
in order to impose the conservation laws.

To understand the eA'ect of the regularization of the
partition function on the functional integration, it is easi-
est to consider an example. Take g(co) to have the form
(z —a)8(ro)+ah(co —1), where x is the area of Q.
That is, G(co) describes a vorticity distribution with the
property that the area upon which the vorticity takes the
value 1 is a; the vorticity vanishes elsewhere. Then with
lattice spacing a we obtain N=~/a lattice points, upon

the theory. Equivalently, we may say that the vorticity
distribution function G(co), which yields the measure of
the subset of 0 on which the vorticity takes on a value
less than co, is preserved by the Aow.

The preceding assertions follow from the Hamiltonian
formulation of the Euler equations described by a num-
ber of authors. '' Our equilibrium statistical mechanics
will be obtained by averaging over all configurations of
the fluid which share the same G(co) and energy, ' with
a weighting arising naturally from the Hamiltonian. '

As in many applications of statistical mechanics, we can-
not rigorously justify our assumption of ergodicity. '

We now sketch the construction of our theory. For
ease of presentation we consider only the very simplest
case: two-dimensional Euler flow in a disk 0 of radius l.
We impose free boundary conditions so that the only role
of the boundary is to make the volume finite; consequent-
ly, we take —(I/2z)ln~r —r'~ as our Green's function.
We also require that our vorticity distribution G(co) be
such that the magnitude of the vorticity is bounded by
some co max.

Our Hamiltonian takes the form' '' P= —,
' f&d r

&&u (r). This non-negative quantity is the kinetic energy
of the fluid once we rescale r to be dimensionless and set
the density to 1. We integrate by parts and ignore the
contribution of the boundary to obtain

which the vorticity takes value 1 on a/a' points and
value 0 on the remaining points. The functional integra-
tion varies the vorticity field over all possible ways of al-
locating the a/a 1's and N —a/a 0's among the N lat-
tice sites, with each site occupied by exactly one 1 or 0.
It is clear that G(co) is approached exactly as a 0.
The limiting process, in which % ~ at constant total
system volume and the distance of closest approach of
two vortices a 0 at the same rate, distinguishes our
system from the point vortex gas. For a continuous
G(r0), we slice the range of the vorticity field into inter-
vals, and choose the relative numbers of lattice sites on
which the vorticity falls within a given interval, so as to
converge to G(m) in the limit of vanishing lattice spac-
ing.

We now outline our argument that the partition func-
tion converges to a well-defined and nontrivial limit as
the lattice spacing vanishes. In fact, we can derive an
explicit condition which the equilbria must satisfy. The
reason we can do so is that, for a certain class of vorticity
distributions, we can prove that a mean-field theory is

exact, as one might anticipate from the long-range na-
ture of the interaction. This class of vorticity distribu-
tions consists of those for which

~ co~~,. „ is finite.
The validity of the mean-field theory is a consequence

of four factors: (i) the strong constraint imposed by the
conservation of a G(co) of this type; (ii) the indepen-
dence of the range of the potential on the lattice spacing
a; (iii) the smoothness of the potential away from the
source; and (iv) the mild divergence of the potential at
the source.

Our proof divides into two steps. The first step is to
argue that given a G(co), we can approximate the energy
to within accuracy a by considering only structure above
a fixed length scale i. We obtain the Hamiltonian S'
given by (6) but with / replacing a and the co; now aver-
ages over boxes of side l. The scale I is determined by
~co~ .,„and a; we allow a and I to vanish at the end of the
calculation. The '1f' approximates the energy to the
desired accuracy uniformly over the set of configurations
allowed by G(ro). A consequence of uniform conver-
gence is that we do not care about correlations on scales
smaller than I, so long as we satisfy the constraints im-
posed by G(co). We take i 0 at the end of the calcula-
tion. For notational simplicity we shall not write this
limit explicitly.

Our second step is to calculate the entropy S of a sys-
tem with a given vorticity field and lattice cutoA' a by re-
garding lattice points within a distance l of each other as
independent. The entropy is dominated by the large
number of isoenergetic configurations of the (l/a) vor-
tices, and may be explicitly calculated.

We may view g(cr) as determining the total number of
squares of side a on which the vorticity takes a value
very close to a. We define the quantity p(o, r) as the
density of squares of vorticity o. within a distance I of r.
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„2)pexp[ —a '[P(p)/T g(p,—g))] . (7)

Here T=a T and S(p,g) =a S(p,g) is the loga-
rithm of the number of ways of generating p, given a

p must satisfy two conditions: (cl) f: dap(a, r) =1,
which enforces incompressibility; and (c2) f„d rp(cr,
r) =g(o), which correctly normalizes the density. Note
that co(r), the vorticity density, is given by

f— do ap(a, r).
Now we can write the partition function in terms of p:

vorticity density function g regularized with cutoff a.
Since we may regard the (I/a) vortex squares of side a
which lie in a box of side I around r, and which yield
p(cr, r), as uncorrelated, we obtain the entropy of an
ideal gas:

S(p,g) = — d r do p(a, r)lnp(a, r)

which does not depend on a. The quantity in square
brackets in (7) then does not depend on a, and in the
limit of vanishing lattice spacing the integral is concen-
trated where this quantity is minimized. Stationary
points of this quantity occur at

p(o, r) =exp ——y(r)+ p(a)
T

p oo 0'
der'exp —=y(r) +p(a')

4 —oo T

where p(o) are Lagrange multipliers implicity defined by the constraints (c2). Using (2) we see that minima of (7)
correspond to minima of the free energy:

r

(y )2 woe aVg(y) =— d'r + T ln da exp ——y(r) +p (cr)4 2 4 —oo T

where y must satisfy the boundary conditions. Equation
(10) is the free energy for a generalized Ising model with
logarithmic interactions; it can be independently derived
from the Hamiltonian for the two-dimensional Euler
fluid using a Kac-Hubbard-Stratanovitch transforma-
tion, where the constraints are imposed upon the Ham-
iltonian by Lagrange multipliers.

We can draw several conclusions from our argument.
(1) It was necessary to require that T vanish along with

the lattice spacing. It is T which determines the energy.
(2) It is easy to see that for a neutral system where g is

symmetric about the origin, @=0 minimizes Pg(y) for
T~ 0. There are no nontrivial solutions with non-
negative T in this case. (3) In general, the vorticity den-
sity function gd derived from the to(r) which yields the
above minimum is not the same as g. We know that

d'r to(r) - do og(a), (1 1)

but no other moment of the vorticity is necessarily the
same for both g and gd.

Put another way, suppose our fluid evolves from
smooth initial conditions with vorticity distribution Gb, a
"bare" vorticity distribution. The evolving flow is
stretched and folded, a process which eA'ectively dis-
perses the smoothly distributed vorticity into smaller and
smaller scales. Asymptotically in time t, a measurement
on scales large compared to the arbitrarily small scales
into which the vorticity is dispersed will yield a distribu-
tion Gd(t) which will converge to Gq, the "dressed" vor-

ticity distribution, as t ~. Since Gd measures aver-
ages, it need not coincide with Gb The en. ergy and one-
body integrals are conserved, since they are long-
wavelength properties.

Although Gd in general differs from Gb, a trivial
consequence of our arguments is that, at a given energy,
Gd yields the same equilibrium solution as Gb. Further-
more, the given energy turns out to be precisely the max-
imum energy compatible with Gd. It follows that the
configuration would be dynamically stable. ' In other
words, if we consider the process of solving Eq. (10) to
obtain the dressed distribution from a given bare distri-
bution and energy as a mapping, then Gd is a zero-
temperature fixed point of the mapping. A physical im-
plication of this result, which we call the "dressed vorti-
city corollary, " is that for a fluid in statistical equilibri-
um, coarse-grained quantities suffice to determine the
equilibrium. This observation suggests that our equili-
bria might persist in the presence of a viscosity acting to
smear the small scales. An equivalent way of stating our
result is that the long-time dynamics of an inviscid fluid
will evolve to a configuration which is a global extremum
of the energy, subject to satisfying the long-time
(dressed) vorticity distribution.

We work out a simple example to show the relation of
our work to previous results. We use the same form of
the distribution G as in our example of functional in-
tegration, and consider for convenience Dirichlet bound-
ary conditions on a disk, with T (0. We find from (9)

a exp[ —y/T+ p 1 (a, T) ]

(rt —a)exppo(a, T)+a exp[ —y/T+ p i(a, T)]
(12)

where the chemical potentials po i(a, T) are used to enforce (c2). This equation describes the statistical equilibrium of
an inviscid fluid with our specified vorticity distribution and temperature T, and is new in this context. A related, but
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distinct, equation has been derived by a number of previ-

ous authors for point vortices using a mean-field argu-

ment. Their equation is a special case of ours, as we

can see by taking the limit a 0, at the same time scal-

ing the vorticity so as to keep the total circulation con-

stant. Fixing T less than —I/8tr, the mean-field collapse

temperature for point vortices, we obtain

at (r) = —V'tit

=exp( —tlt/T) d r exp( —t71/T)

Here to (r) denotes the normalized density of points.
For 0) T ) —I/8tr, the solutions of (13) collapse to a

point in contrast to the solutions of Eq. (12), which

remain continuous and finite. '6

We remark that conservation laws and fields linear in

co(r) do not affect our formulation, which we expect to
be applicable to a wide variety of Hamiltonian systems
possessing infinite families of Casimirs, among them

many of those described in Ref. 9. In particular, it may
be relevant to the two-dimensional guiding-center plas-
ma. '

More generally, a 6 with
~
to ~,„unbounded may be

physically relevant. Our mean-field argument may fail
in this case, because S diverges as a vanishes, the energy
no longer necessarily converges uniformly in l, and/or
the self-energy contribution can no longer be ignored.
These considerations lead us to expect that 6 exists such
that T is finite as the lattice spacing a 0. Such re-

gimes are of interest because we could couple them to
thermal (e.g. , molecular) degrees of freedom.

We learned after this manuscript was submitted that
Eq. (12) and its generalizations had been derived earlier

by Lynden-Bell in the context of stellar dynamics. '

There the particles interact by a gravitational potential.
The equation of motion is the collisionless Boltzmann
equation, and the conserved density is a function of both
space and velocity degrees of freedom. Interpretation of
the Lynden-Bell equilibrium is problematic in stellar dy-

namics, since in contrast to two dimensions, in three di-
mensions equilibria do not exist under physical boundary
conditions.

The origin of this work was the suggestion by Cross'
that Marcus' dynamical simulations' of Jupiter's Red
Spot might be explained in the terms of statistical
mechanics. We hope in the future to address the appli-
cation of these methods to the spot.
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