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Long-Range Intensity Correlation in Random Media
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Measurements of the spatial and spectral intensity correlation of microwave radiation allow us to iden-

tify the leading terms in a perturbation expansion of the correlation function. This function is shown to
depend upon two average properties of damped eigenstates of the random medium. These are the aver-

age level width Bv and the number of eigenstates within the level width 8, whose inverse is the expansion

parameter for the correlation function.

PACS numbers: 42.20.—y, 05.40.+j

The random phasing of partial waves in the presence
of disorder leads to large fluctuations in the intensity of
classical waves and in the current density of quantum-
mechanical ~aves. Fluctuations occur as the point of ob-
servation is moved' or at a fixed point as the frequency
of the incident field or energy of injected carriers is

varied. We report here on the first direct measurements
of long-range intensity correlation. These measurements
reveal that the apparently random intensity variations in

different coherence volumes of the sample are not statist-
ically independent but rather mask a remarkably high
degree of correlation throughout the sample. Because of
this correlation, fluctuations in transport through quan-
tum and classical mesoscopic systems do not self-average
as the size of the sample increases. Thus, these results
provide the microscopic origin of universal conductance
fluctuations observed in magnetoresistance experi-
ments and of large fluctuations in optical transmis-
sion

In this Letter we report measurements of the intensity
cross-correlation function of microwave radiation as a
function of detector separation and frequency difference.
These observations allow us to identify the contributions
to the correlation function associated with distinct orders
of perturbation theory. Spatial correlation is shown to
be a consequence of spectral correlation at a point.
These results can be described in terms of two statistical
properties of damped eigenstates for a wave which is

both elastically and inelastically scattered in a finite

sample. These properties are the ensemble averages of
the width of eigenstates b'v, '' ' and of the number of
eigenstates within the level width 8, ' ' which is
6'=(dN/dv) bv, where dN/dv is the density of states.

In the weak-scattering limit, in the absence of inelastic
scattering, the intensity correlation function has been
calculated as a perturbation expansion in a small param-
eter which is the inverse of the dimensionless conduc-
tance g. For classical waves, g corresponds to the total
transmission summed over all input transverse momen-
turn channels of a wave at a given frequency with unit
incident flux density. ' Feng, Kane, Lee, and Stone cal-
culated the three leading terms in the expression for the
cumulant intensity correlation function as a function of

angle, within the transmitted speckle pattern, C=C~
+C2+C3+ . The leading term C~ has dominated
previous measurements of spectral, ' '" temporal, ' and
angular" intensity correlation. It is obtained in the field
factorization approximation for C. "'7's In terms of
the intensities I1 and 12 at two points in the sample,
which are normalized to their ensemble-average values,
this approximation gives

where E
~

and E2 are the associated normalized complex
scalar fields, the brackets denote the ensemble average,
and G =Re(G ) is the field correlation function. The
field in the medium due to an incident monochromatic
wave can be expressed as a linear superposition of eigen-
states of the wave in the random medium which are
driven at the excitation frequency v, E =Pc;u;(r)e' "".
The amplitudes c; of modes with natural frequencies v;

are only appreciable when the frequency offset is less
than the level width,

I
v —v; I (Bv. The value of

G (Av), therefore, only changes significantly for fre-

quency shifts Av) Bv. G (hv) is the Fourier transform
of the time-of-flight distribution of particles that have
not been inelastically scattered, and its half-width can be
identified with Bv. "

The influence of long-range correlation upon intensity
statistics was observed recently in microwave experi-
ments. ' The dependence of C2 upon separation between
the points R and frequency shift h, v is reported here. C2
is responsible for enhanced fluctuations in the total
transmission for samples irradiated with a single-input
mode, ' which were observed recently in optical experi-
ments. ' Long-range correlation and enhanced transmis-
sion fluctuations are a consequence of spectral correla-
tion, which limits the number of statistically independent
parameters which influence the transmitted intensity to
the number of eigenstates in a linewidth, 6'. We expect,
therefore, that the fractional fluctuation from the aver-
age intensity (I~ —1) at point 1 in the output plane of
the sample is correlated with the fluctuations (I2 —1) at
another point in the same plane to a degree —I/8. To
lowest order in 8 ', the cross correlation of these inten-
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sity fluctuations is, therefore, given by

&(I, —
1 )(I,—1 )) =((I, —

1 )[b '(I, —
1 )1)

=b ' var(I) .

For b»1, var(I)=1 and ((Il —1)(12—1))=8 '. Thus,
6' ' is a natural expansion parameter for the correlation
function. Indeed b is the probability that a coherence
volume, through which a typical path reaching point 1

passes, is also crossed by a typical path reaching point
2 12

The degree of intensity correlation between point 1 on

a transverse plane in the interior of the sample and point
2 on the output face depends upon the separation be-
tween the planes, R, since only particles following paths
which emerge from the sample at plane 2 contribute to
intensity correlation. Therefore, for a sample with trans-
verse dimensions less than its length L for planes which
are sufficiently separated such that C2(R) (8

Cp(R) =b' 'f(R/L), (1)
where f(R/L) is the fraction of photon paths passing
through plane 1 which emerge through the output sur-
face. f(R/L) is independent of absorption and is shown

below to decrease linearly with R/L The .predicted
linear falloff of C2(R) is confirmed experimentally
below. This behavior holds only for the waveguide
geometry since it relies on the assumption that the path-
length distribution for waves reaching a point on a given
transverse plane is the same for all the points on that
plane. Our results, therefore, diff'er from the algebraic
falloff of C2(R) in powers of 1/R in a number of
different geometries predicted by Stephen and Cwilich
and by Pnini and Shapiro. Calculations by Feng et al.
indicate that within the limits of the diffusion approxi-
mation C3 is constant independent of scattering angle in

the far field. This suggests that C3 is also independent of
separation between points. Evidence for such a term is

reported here.
In the absence of absorption, in the limit b&&1, the

Einstein relation gives 8'=g. ' ' When absorption is in-

troduced, the degree of correlation is expected to de-
crease, whereas g

' increases. On the other hand, the
exponential suppression of long paths by absorption nar-
rows the width of the time-of-flight distribution b't and
leads to a reduction in 8' ', since 6 '-8'v '-Bt. This
supports the argument that 8' ' rather than g

' is a
universal correlation parameter. We note further that 8
is related to the Thouless number' ' ' and describes
the proximity to the localization threshold which occurs
at 8=1.

For separations between points R such that the change
in the half-width of C(hv) is small, we find that the
dependence upon h, v and R of each order of perturbation
theory can be factorized. Thus, in the presence of ab-
sorption, for R ((L we can write

where a = yl, l is the transport mean free path, and y is a
constant, of order unity, such that the transmission
coefficient is T(L) =yl/L for l«L«L, —= a '. Since
Hi(R) decays as a result of the randomization of the
phase of the field, its correlation length is just the field

incident
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v~v,

'

absorber

where q is the square root with negative imaginary part
of a +i 2zhv/D, a =(Dr, ) ' is the absorption co-
efficient for L & a, D is the diAusion coefficient, and
r, is the photon absorption time. The 2's are functions
of 6 and are of order unity with Ai =1 for 6»1. The
F's and H's are normalized for h, v =0 and R =0, respec-
tively; F; (aL ) =H; (0) = 1.

The results reported here are for a sample of —,
' -in. po-

lystyrene spheres with volume filling fraction f=0.58.
The sample is contained in two 7.3-cm-diameter copper
tubes and has a length L =150 cm as shown schematical-
ly in Fig. 1. The spheres fill the volume uniformly but
are loosely enough packed that all the spheres move
when the cylinders are rotated so that new sample con-
figurations are readily produced. Intensity spectra at
various points in the sample are obtained simultaneously
using Schottky-diode detectors. The frequency of the
microwave oscillator is swept from 20.6 to 21.7 6Hz in

1000 steps by a computer-generated voltage and the data
are stored in the computer. The radiation is launched
from a horn placed 20 cm in front of the sample. Diodes
are mounted on the face of the plunger directly behind
the sample and inside a 4 -in. quartz tube in a narrow
section between the two copper tubes. The separation
between the detector inside the sample and those on the
face of the plunger can be varied without changing L by
translating both the plastic tube at the input and the
plunger at the output of the sample. After each spec-
trum is taken, the copper cylinders are rotated about
their axes for a few seconds to produce a new sample
configuration.

In the limit b»1, C=C|=iG i for R=O, and the
measured correlation function with frequency shift of op-
tical and microwave radiation is in agreement with the
result of the field factorization approximation, "'

isinh(qa)/sinh(qL) iFi qL =
[sin h (aa )/sinh (aL ) ] '

C(qL, R) = g 2;8' 'F; (qL)H; (R), (2)
FIG. 1. Schematic diagram of the experimental setup.
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FIG. 2. Cross-correlation functions of intensities between a
point in the output face and points inside the sample, at various
distances R from the output face. The solid line is a fit to the
points, as explained in the text.

correlation length —1/k, where k is the wave number.
Calculations by Shapiro for a wave in an infinite medium

give 0 i (R) [sin(kR)/kR) e l . ' In contrast,
higher-order corrections decay much more slowly with R
and dominate the cross-correlation function C(dv;R) for
R »1/k and are particularly large for small values of b.

Measurements of the cross-correlation function using
the experimental arrangement described above are
shown in Fig. 2. Since R) 4 em=25/k, the contribu-
tion of Cl is expected to be negligible. The results for
R =4 cm, averaged over 1500 spectra (triangles), R =20
cm averaged over 2800 spectra (circles), as well as for
the average of 11000 spectra taken at R 4, 6, 8, 10,
and 20 cm (points) are shown. The frequency depen-
dence of Cz(hv;R) is seen to be independent of R for 4
cm ~ R ~ 20 cm. This supports the conjecture that the
spectral and spatial dependence of Cz can be factorized
as in Eq. (2). An analytic expression for Fz(qL) has not
been calculated theoretically. To obtain an analytic ex-
pression for Fz(qL) to be used in a comparison of Eq.
(2) to the measured intensity correlation function, we ex-
press Fz as the sum Fz(qL) =BiF&(qL)+BzFz(qL),
where Bl and Bz are constants and

I (a/q) [coth(qL) —qL/sinh (qL)) IFz qL
coth (aL ) —aL/sinh (aL )

is a normalized function that falls asymptotically as
dv 'l . The form of Fz(qL) is suggested by the calcula-
tion by Feng et al. of the far-field. intensity correlation
function with angle. Apart from a small base-line shift,
the points in Fig. 2 are fitted using the form given above
for Fz(qL) with Bi =0.46 and Bz=0.54. This fit is
shown as the solid line in Fig. 2.

The autocorrelation function for a point at the output
face of the sample with L =150 cm averaged over 30000
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FIG. 3. (a) Intensity autocorrelation function
the output face of the 150-cm-long sample.
cross-correlation function for points on the
separated by 0.6 cm.

for a point at
(b) Intensity
output plane

spectra is given by the circles of Fig. 3(a). The solid line
is a fit of Eq. (2) to the data using the forms for Fi(qL)
and Fz(qL) given above and L, 25 cm as determined
from measurements of the exponential falloff of T(L).
The fit gives A =0.90, D (3.0~0.2) x10' cm /s, and
Azb '=0.13. Using this value of D, we find the half-
width of Ge(dv) is bv-3. 1 ~0.2 MHz. The density of
states per unit frequency in a sample of volume V is
dN/dv=(2k /xv) V, where U is the wave velocity in the
sample. For this sample dN/dv=6. 3 MHz ' and
b=(dN/dv)bv 20+ 2. The scattering is locally weak
since l =3D/v =4.0H-0. 2 cm and kl =23. '

C(dv;R) for two ponts on the output face of the sam-
ple which are separated by R =0.6 cm is shown by the
circles in Fig. 3(b). A fit of Eq. (2) to the data using the
values of A) and A2 found above gives H) =0.008 and
H2=0.43. The rapid falloff of H) is consistent with the
calculation by Shapiro. ' On the other hand, the much
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FIG. 4. Spatial dependence of the cross-correlation func-
tion.

if one assumes that the data are the sum of C2(R) and a
constant term equal to 0.0026. This constant term is of
order 6' which is the expected value of C3. This con-
jecture is supported by the observation that the intensity
cross-correlation function with frequency shift between
points in the output plane of samples composed of a mix-
ture of aluminum and Teflon spheres with 6-10 con-
tains a constant contribution of magnitude 6

In conclusion, we have observed the leading terms in

the intensity correlation function. The results support
the conjecture that long-range correlation is a conse-
quence of spectral correlation and that intensity correla-
tion may be expressed in terms of statistical characteris-
tics of the states of the random system.

This work was supported by Professional Staff'
Congress-City University of New York research awards.
We thank E. Kuhner for technical assistance.

f can be expanded as a polynomial in its argument, f(x)
=g;-oa;x, with a linear term which is nonvanishing
for diffusive transport. The sum of the left-hand side of
Eq. (3) is independent of x only if all coeScients a; with

i ) 1 vanish. Hence f(x) =an+ aix. Since f(1) = yl/L,
and from Eq. (3),f(0) =1 —yl/L, we find

f(x) = (1 —yl/L) —(1 —2yl/L)x . (4)

C2(R) is given by Eqs. (1) and (4). The value of y can
be determined from the slope of Fig. 4. We find

y 1.93. The value of 8 can be readily evaluated from
this line since f(0.5) =0.5 and C2(R=L/2) =0.58
This gives 8=21~2, in agreement with the value ob-
tained from the measurement of Cl in Fig. 3(a). From
Eqs. (1) and (4), C2(R) is expected to extrapolate to
zero at a distance = yl = 8 cm beyond the sample, i.e.,
at L =158 cm. ,The line in Fig. 4, however, extrapolates
to zero at 168 cm. This discrepancy could be explained

slower falloff of 02(R) is a direct manifestation of the
existence of long-range correlation. '

The measured values of C(R;hv=0) between a point
on the output surface and points on the axis of the
cylinder for distances R & 2 cm into the sample are plot-
ted as the points in Fig. 4. The predicted form of C2(R)
is given by Eq. (1) as a function of x=R/L. Since all

paths in the sample emerge either through the input or
the output face, we have the condition
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