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We propose a new method for evaluating the decay rates of time correlations in chaotic dynamical sys-
tems, based on averaging over periodic orbits. We use a cycle expansion of a Fredholm determinant
which is in practice superior to the corresponding expansion for the Ruelle ( function. The method is
tested in one-dimensional expanding maps with the resulting decay rates compared to those obtained in
two other independent ways: by a perturbative calculation of the spectrum of the transfer operator and
by direct numerical computations of time correlations. Moreover, we show that in general the decay
rates are not simply related to generalized Lyapunov exponents.

PACS numbers: 05.45.+b, 02.50.+s

Time correlation functions play a central role in the
study of dynamical systems. ' The power spectra of these
correlations are usually the only experimentally accessi-
ble quantities in chaotic and turbulent flows. On the
other hand, the characterization of deterministic chaos in

systems with few degrees of freedom has been achieved
mainly by the calculation of Lyapunov exponents, fractal
dimensions, and entropies. ' At present, there exist for
these quantities rather sophisticated numerical meth-
ods, " related to the dynamical g functions by calcula-
tion of unstable periodic orbits. Nevertheless, these
methods are not fitted for extracting the decay rates of
time correlations, since g functions are meromorphic, i.e.,
have simple poles. In this Letter we present the first
determination of these rates using periodic orbits. This
has been done through the study of a Fredholm deter-
minant d which in many cases (for example, axiom-A
maps ) is an entire function in the complex plane. The
decay rates of time correlations are determined to a high
precision in terms of the zeros of d. Our technique is
considerably more e%cient than a direct analysis of the
time signal by interpolating exponential methods.

For simplicity, we focus our discussion on analytic ex-
panding maps f(x) of the interval which conserve the
probability measure (with zero escape rate). For this
case we can perform a perturbative calculation of the ei-
genvalues of the transfer Perron-Frobenius operator
which gives independent and very accurate results.

However, most of our considerations apply to more gen-
eral cases like hyperbolic repellors and higher-dimen-
sional axiom-A (Ref. 6) attractors. For two observables

and 8, the time correlation C~ tt(r) is given by
(A (x„+,)8(x„))—(A)(8), where the time average
( ) is assumed to converge and to define a unique er-
godic probability measure (the natural measure ). It
can be modulated and, in many situations, expressed as a
sum of complex exponentials,

Cg it (r) = g c,e e
i

where the coeflicients c; depend on the choice of the ob-
servables but the exponents a; —im;, the resonances of
the system, do not. Let us briefly sketch how these reso-
nances, for axiom-A systems, can be related to the eigen-
values of the Perron-Frobenius operator X, defined by
the integral Fredholm equation

[X@](x)=„6(x—f(y))@(y)dy

e(y),
..-ft ) ID fl

where the sum extends over the preimages of x and D~ is
the derivative taken at y. The integral kernel G(x,y)
=8(x —f(y)) defines a compact operator having eigen-
values v; (i =0, 1, . . . , ~), which decrease exponentially
with i for expanding maps. For one-dimensional repel-
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lors, —ln!vo! is the escape rate' from the invariant sub-

set of f. If the measure is preserved by the time evolu-

tion, the first eigenvalue of L is vo= l. Using the rela-
tion

—ln(d) =g g vg =g Tr/".
n n k n

(3)

The technical utility of introducing the Fredholm deter-
minant stems from the possibility of calculating the trace
in (3) directly from the integral kernel of 2, allowing us

to connect d to the periodic cycles of f":

(4)

where J=D,f"!„-,„and the sum extends over the fixed

points xs„of f". In higher-dimensional cases one re-

places !1—JI with det!1 —JI in (4). Expanding the ex-
ponential function, we obtain the power series

(W(f'(x))B(x))= dyA(y)f j 3p](y),
one realizes that correlations decay as C~ tt (r)
=g;:lc,(v;)', where the real part of —ln(v;) is the
mixing rate a; and the imaginary part is the oscillation
frequency co; in (1). In order to determine the spectrum
of 2, we study the Fredholm determinant d(z)
=detail —z2] =+i, (1 —zvt, ) for complex z. Its zeros
(repeated according to their multiplicity) give the re-
ciprocal eigenvalues of X. This is easily seen through a
formal calculation, defined for z values inside the inverse

spectral radius r of X (I!zan! I & 1), analytically contin-
ued outside this region. Using the Taylor expansion of
ln(1 —zvt, ) we get

It is worth stressing that all ( 's, in contrast to d, have

poles between the zeros, as shown by Fig. 1. The zeros
of (o

' are the inverse eigenvalues of X, '' but their nu-

merical determination is difficult, due to the intrinsic
pole structure. However, from the zeros of the polyno-
mial (5), we obtain a large number of leading resonances
to a high precision.

In order to illustrate our arguments, consider the Ber-
noulli map f(x) =x/p for 0(x(p and f(x) =(x —p)/
q for p & x ( 1 (q= 1

—p), as well as the tent map
where the latter branch is replaced by f(x) =(1 —x)/q
for p & x ~ l. It is useful to consider a set of general-
ized Lyapunov exponents

L(Q) = lim —ln(ID„f" I&), Q E 8.1 (7)
n ~ n

They are related to a Ruelle zeta function („„defined in

the same way as ( in (6), but with J replaced by its ab-
solute value

I JI. The location of the first pole of
(» —i(z) is at Iz! =exp( P, ), w—here P is called the
topological pressure of the weight function ID„f"

I
™,

and Pi= —ln(vo). For hyperbolic maps one has'2 P
=L(1 —m). The generalized Lyapunov exponents for
both the Bernoulli map and the tent map are
L (Q) = ln(p ' ~+q

' ~), since the averages (7) are
given by a Bernoulli shift where ID„f!=p with proba-
bility p and ID,f!=q with probability q. On the oth-
er hand, an explicit calculation of the eigenvalues of the
Perron-Frobenius operator gives '

vk =p
+ '+ q

+ ' for
the Bernoulli map and vi, p +'+( —1) q"+' for the
tent map. Note that L( —m) =ln(v„, ) in piecewise-
linear maps which conserve the probability measure and
have positive Jacobians. It has thus been conjectured'

d(z) = + exp-
n 1

z" g 1

I .0

=1+ciz+c2z + (5)

where the coefficients c decrease exponentially '' with

m, implying that the vk decrease exponentially with k.
Hence d(z) is analytic in the whole complex plane. In

our calculations, we numerically find the fixed points of
f" up to some given order n, expand the sum in (5) to
this order, and use a zero-localizing routine to obtain the
desired reciprocal eigenvalues. For expanding maps,
IJI) I, so that !1—JI '=IJI 'g =oJ™and the
Fredholm determinant can be rewritten as a product over

prime cycles (PC),

0.5

-0.5—

d=n n
p, x F PC(f~) 0 I

0.5 I.O 2.0

In this way, d is given by an infinite product of inverse j
functions defined as

OO n

g '=Uexp —'
n 1 n g)((fn)

FIG. l. Inverse dynamical zeta functions jo (z) and
'(z) (dot-dashed and dashed lines) with their product (solid

line) vs z real, for a Bernoulli map (p =0.8) with the addition
of a small nonlinear term. Observe the cancellation of the pole
of go

' in the product.
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and, for p&x~ l,

f x) =[h +[h'+4h(x —p))'")/2h,

f(x) = [h+ [h+ 4h(1 x)] '"l/2h

(Sa)

(Sb)

with h ~ =h+ q and =1-q= —p. h ps redu e re-
spective y to the Bernoulli map and t hn o t e tent map for

tions we 'd
n or er to carry out the perturbative calcula-

ions, we consider a convenient basis
'

ions e
' '

asis m the functional
e w ic acts on, namel

u= uo, ul, . . . with u, =x'. Acting with X on u, we et
a matrix representation L of the Pea m

' '
e erron-Frobenius opera-

we obt
'

r~ 1 e i un mum(L)mn and froom its diagonalization
o ain t e eigenvalues [v l.o

'
vj, . For a piecewise-linear

ap, is upper triangular and thethe eigenvalues are given

y i s iagonal elements. Nonzero elements O(h) are in-

that the leadin cg orrelation decay is equal to the avera

i an a solutely continuous measure [i.e., al =L( —1)
o s ow t at such e ualities

determinant, we a
i erent from the mth zero of the F dhe re olm

, we add a nonlinear term to the Ber
and the tent maps. In this cn is case, we introduce a perturba-
tive approach which allow us to obtain tho ain t e eigenvalues of

erron-Frobenius operator with ver hi h

cyc e expansion. In practice, we have adde

tent maps, although all kind of smooth er
o ldb o id d. Th e maps are, for 0& x ~ p s

f x) =[(h —p)+[(h —p)'+4h ]'"}/2h 'I

O

CJ

CD

L
c3

0 l5
time

FIG. 2. The autocorrelation C(r) =(sin(zx

turbed autocorrelati
p = . an h 0.1; the dashed line i's the unper-

a ion given by the corres ndin
The circles are obtained by a direct

' ' '
oaine y a direct numerical iteration of (Sb)

or steps. Inset: Magnification of the c
the error bars of the data

e correlation tail with

troduced below the dia onal b
o e map. In this c

'
gona y a nonlinear perturbation

p. 's case we find the eigenvalues of L b

tion is determined b th
~ ~

standard numerical method Th d rtus. e or er of the ertu

y e size considered for L. In Fi . 2
a direct numerical computation of the

serva e sin'zx) is compared to the
1 1 o fo 11 (

rtp, ,'„g „atror e ma Sb) u
'

n e ot er hand, via prime-c c e 5
p

' - yc'e expansion, we have
aine t e various first poles of th e ~ s as well as the

TABLE I. F
obtain

or the map (8a) with p =0 8 d h = . , ivan =01, we iv

ine by the perturbation thn eory and the corres ondin
give fourteen eigenvalues v f Xs vmo

d b„h io (5) , using quadruple recisionp p o y op
g' " '" " " " " " " " " g'

0
1

2

3

4
5

6
7
8
9

10
11
12
13
14

Perturbation theory

1.0000000
0.609 577 2

0.396 1004
0.211 2198+ i0.062 325 3
0.211 2198 —i0.062 325 3
0.101 624 5+ i0.065 689 8
0.101 624 5 —i0.065 689 8
0.044 757 6+ i0.046 454 8
0.044 757 6 —i0.046 454 8
0.017476 6+ i0.029 124 9
0.017476 6 —i0.029 124 9
0.005 562 3+i0.016978 5
0.005 562 3 —i0.016978 5
0.000 8969+ i0.009 358 5
0.000 8969 —i0.009358 5

Zeros of d(z)

1.000 000 0
0.609 577 2
0.396 1004

0.211 2198+ i0.062 325 3
0.211 219 8 —i0.062 325 3
0.101 624 5+ i0.065 689 8
0.101 624 5 —i0.065 689 8
0.044 757 6+ i0.046 454 8
0.044 757 6 —i0.046 454 8
0.017476 6+ i0.029 124 9
0.017476 6 —i0.029 124 9
0.005 560 3+i0.016979 1

0.005 560 3 —i0.016979 1

0.000 7924+ i0.009 228 3
0.000 792 4 —i0.009 228 3

Significant
digits

30
25
22
18
18
15
15
11
11

8

8

5

5

3

3

exp[1( —m)l

1.000 000 0
0.569 617 8
0.360 264 3

0.243 632 5

0.168 831 0
0.117820 1

0.082 3936
0.057 657 1

0.040 355 7
0.028 248 0
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Cycle
length First zero Second zero Third zero

10
11
12
13
14
15
16

0.999999978057 0.609582926685 0.395815287444
1.000000000289 0.609577043 174 0.396109891 634
0.999999999997 0.609 577 170 192 0.396 100 162 372
1.000000000000 0.609 577 167 745 0.396 100450 887

0.609 577 167 759 0.396 100448 279
0.396 100448 392
0.396 100448 394

TABLE II. Convergence of the cycle expansion for the ini-

tial three zeros of d(z) as function of the cycle length.
our method an easy numerical tool. However, it is not
suited for maps too close to the intermittent transition,
where a probabilistic approach exists. Moreover, the
application to systems with infinite grammars, such as
the Henon map, is not straightforward, because of the
slow convergence of the cycle expansion. We believe
that this is still a major open problem in the analysis of
dynamical systems.

We are grateful to P. Cvitanovic for his warm interest
in our work and for illuminating discussions. G.P.
thanks S. Isola and S. Vaienti for useful suggestions.

zeros of the Fredholm determinant. Table I shows that
the generalized Lyapunov exponents L(Q= —m) are
diFerent from the eigenvalues v, for a generic one-
dimensional map. It also gives the accuracy of our cycle
expansion method by the comparison between zeros of d
and the independent perturbative estimate of the eigen-
values v . In fact, our perturbative approach gives the
resonances with the computer precision but only for ana-
lytic maps with sufficiently weak nonlinear part. In con-
trast, the Fredholm determinant provides us with reso-
nances for any expanding analytic map. The fast con-
vergence of the polynomial approximation of d(z) with
the order of the cycle length is shown in Table II. This
method is superior to the cycle expansion of the g func-
tion as well as to a direct analysis of the time signal.
Our scheme can also be applied in higher dimension as
long as the symbolic dynamics has a finite grammar and
the cycles of the system are bounded away from margin-
al stability. A detailed understanding of the theory of
transfer operators and g functions is not required for the
computation of the polynomial form (5). This makes
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