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First Observation of Paramagnetic Nitrogen Dangling-Bond Centers in Silicon Nitride

William L. Warren, P. M. Lenahan, and Sean E. Curry
The Pennsylvania State University, University Park, Pennsylvania 16802
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We report the first definitive identification of nitrogen dangling bonds in silicon nitride. A computer
analysis of ' N hyperfine parameters shows that the unpaired electron is strongly localized on the central
nitrogen atom and that the unpaired electron s wave function is almost entirely p in character. This is

only the second fundamental intrinsic electron-paramagnetic-resonance center to be identified in silicon
nitride.

PACS numbers: 76.30.Mi, 73.40.Qv, 73.60.Hy

The electronic properties of silicon nitride are dom-
inated by deep traps. ' Because of the considerable im-

portance of silicon nitride films in semiconductor device
technology the electronic properties of these traps have
been extensively characterized. " Over the past decade,
quite a few models have been proposed for the chemical
nature of these traps. Prominent models have included
silicon dangling bonds and nitrogen dangling bonds;
it has also been suggested that silicon-hydrogen bonds

play a dominant role in trapping.
A number of electron-paramagnetic-resonance (EPR)

studies have been useful in identifying the electronic
properties of traps in amorphous silicon dioxide'0'' and
amorphous silicon. ' ' During the past ten years a num-
ber of groups have applied EPR to silicon nitride. 4 6'
Virtually all EPR observations have involved a single
line with a zero crossing g=2.003 (the g factor is

defined by the expression g hv/PH, where h is Planck's
constant, v is the microwave frequency, p is the Bohr
magneton, and H is the magnetic field at resonance). In
early studies, this EPR signal was tentatively ascribed to
a "silicon dangling bond. " A recent Si hyperfine
study' of this g=2.003 center, which we term the K
center, unequivocally demonstrates this to be the case.
A very recent electron-nuclear double-resonance (EN-
DOR) study' shows that the K-center silicon atom is
bonded to nitrogen atoms. The work of Krick, Lenahan,
and Kanicki establishes the K center as the dominant
deep trap in nitrogen-rich silicon nitride films prepared
by low-temperature plasma-enhanced chemical-vapor
deposition (PECVD) in stoichiometric silicon nitride
films prepared by fairly high-temperature low-pressure
chemical-vapor deposition (LPCVD).

In this paper we report the first definitive identification
of a second center in amorphous silicon nitride. Our re-
sults conclusively establish this center to be a nitrogen
dangling-bond defect. We observe the center in both a
high-purity LPCVD stoichiometric silicon nitride powder
and in a nitrogen-rich silicon nitride thin film prepared
by low-temperature PECVD and then subjected to a
600'C anneal in air. It should be emphasized that this
center, at least in its paramagnetic state, is generated in

numbers far lower ((10%) than that of the K center
(the silicon dangling-bond defect) in a wide variety of
samples which we have explored with EPR; in fact, in

most LPCVD thin films, nitrogen dangling-bond defects
were not observed. However, we feel that its observation
and identification are of considerable importance for sil-
icon nitride as the second fundamental intrinsic EPR
center to be identified in this important material.

In our experiments we used a Bruker 200 series X-
band spectrometer. The measurements were made at
both low and high microwave power levels with the nitro-
gen dangling-bond center signal appearing clearly only
at high power levels. The samples were high-purity
LPCVD stoichiometric silicon nitride powders with grain
sizes of order 1 pm and nitrogen-rich PECVD silicon ni-

tride films deposited in an rf-glow-discharge deposition
system from an undiluted silane (SiH4) and ammonia
(NH3) gas mixture. The PECVD thin films were depos-
ited on quartz or crystalline silicon substrates with film

thicknesses of 10000 and 3000 A, respectively. The thin

balms were subjected to a 30-min anneal at approximate-
ly 600'C in air, prior to uv illumination. (This anneal
considerably enhanced the nitrogen dangling-bond-defect
creation process. ) No background signals due to the
substrate were observed. All samples were exposed to ul-

traviolet illumination from a 100-W mercury xenon
lamp. Prior to illumination, the nitrogen dangling-bond
resonance was not detectable.

Generally the uv irradiation generates primarily K
centers. The uv-light-induced creation of the K center
has been observed in a very wide variety of silicon nitride
samples. ' The K center exhibits a long spin-lattice re-
laxation time; at lower temperatures (T= 80 K) this re-

laxation time is quite long. Using a cw saturation
method developed by Portis (and refined by Hyde' )
we calculate the spin-lattice relaxation time of the K
center to be =30 psec at 80 K. Although this method

may be subject to error, we believe that it provides a
reasonable value for the spin-lattice relaxation time.
The nitrogen dangling-bond defect exhibits a consider-
ably shorter spin-lattice relaxation time. We exploit the
diA'erence in spin-lattice relaxation times by making the
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gen is given by

A,„;„==', g„P„(1/r )q„(gauss) . (2)

H(mi, 8) =b vo/gP
—mIK, (3)

where h is Planck's constant, vo is the microwave reso-
nance frequency, p is the Bohr magneton, and mq is the
nuclear spin angular momentum quantum number. For
' N, I=1; therefore, mi may be —1, 0, or 1 yielding a
three-line spectrum. Also,

Here (1/r )2„corresponds to the expectation value of
1/r over the nitrogen 2p orbital and r represents the dis-

tance between the electron and nucleus. 8,. „;„is a rnea-

sure of the p character of the unpaired electron's wave

function.
We now analyze our ' N hyperfine results to obtain

information regarding the s and p character of the un-

paired electron's wave function. Our analysis of the ' N

hyperfine results involves a computer calculation of the
resonance line shape. The analysis is based upon the re-

lationship between the resonant absorption and defect
parameters for a paramagnetic center exhibiting axial

symmetry.
The magnetic field at resonance for a point defect with

axial symmetry is given by

0

CC

(b)

3375 3415 3455

MAG'NETIC FIELD (GAL'SS)

FIG. 2. Trace a was taken after uv illumination of a
PECVD thin film after a postdeposition anneal at 600'C. This
trace is due almost entirely to nitrogen dangling bonds. Trace
b is a computer-generated absorption derivative of a "N
hyperfine interaction. The data could be replicated by the
computer fit only if the hyperfine-tensor anisotropy is large and
the g tensor exhibited a moderately large anisotropy as well.

g gll cos ~+gL sfn g

K ' = (& ~~ g ~~
cos'8+ ~

hagi

sin '8)/g ',
(4)

(5)

ters. The values utilized in the calculation of b are sum-
marized below:

where 8 is the angle between the applied magnetic field

and the defect symmetry axis. In Eqs. (3) and (5), K,
Ai, and A& are all expressed in units of gauss. A~~ and

8& are related to 8;„and 8,. „;„through

~ II ~ iso+ 2~ aniso ~

~ 4 =~ iSo ~ aniso ~

To obtain the computer calculated absorption deriva-
tive spectra we average over all possible magnetic-field
orientations (8) and calculate the absorption intensity
and magnetic field for all values of 8 (0~ 8( x/2). In

an amorphous material there will be some random varia-
tions in the spin Hamiltonian parameters which we take
into account by assuming a Gaussian distribution in

A Gaussian distribution in g~~ and g& for the

mi =0 hyperfine line was also performed to simulate the
real data. (This procedure is frequently used in amor-
phous materials. ) A~~ and A~ were calculated using
the distributed A;„values; A„. „;„was made a function of
8„, by assuming that the localization was constant for
any given distribution.

In Fig. 2, trace a, we again illustrate an EPR trace of
a nitrogen-rich PECVD film annealed at 600'C and

subsequently exposed to uv light. In Fig. 2, trace b, we

illustrate our computer analysis of the ' N hyperfine re-
sults. The experimental results and computer calculation
match closely only for a fairly narrow range of parame-

11~16, 8„„;„=125+1 6,
g(~ =2.0035, hg() =0.0034+ 0.0005,

g~ =2.0078, Agg =0.0034 ~ 0.0005,

hA„, =8.5 ~ 1.0 G (full width at half maximum) .

The + values indicate the range over which each of the
parameters may be varied and still yield a reasonable fit
to the data. These values are characteristic of many ni-
trogen dangling bonds. 22 28-30 More specif cally, Mack-
ey, Boss, and Kopp reported an EPR observation of a
defect center attributed to a hole trapped on a two-
coordinated nitrogen atom in sodium silicate glasses con-
taining N as an impurity. A two-coordinated nitrogen
defect center was also observed by Friebele, Griscom,
and Hickmott, ' in sputtered Si02 films in an Ar:N2 gas
mixture as well as in an irradiated 90% Si02, 10% Si3N4
glass. Our EPR ' N hyperfine lines in silicon nitride are
fairly close to those reported by both groups.

The central line of our experimental results and com-
puter simulation do not perfectly rnatch due to the as-
sumption of axial symmetry, evidently this point defect
exhibits lower symmetry. Nonetheless, we believe the
salient features of the spectra are replicated reasonably
well using our axial-symmetry assumption.

From our hyperfine parameters we may obtain infor-
mation regarding the unpaired electron's wave function
on the nitrogen. To do this we follow the procedure used
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by many others in a variety of dangling-bond
centers. ' ' ' ' We assume that the nitrogen dan-

gling bond may be written as a linear combination of
atomic orbitals,

I y&N C2s ~
2s&+C~, ( 2p&+ ( oth«&, (8)

'P. C. Arnett and B. H. Yun, Appl. Phys. Lett. 26, 94
(1975}.

2H. Maes and R. J. Van Overstracten, Appl. Phys. Lett. 27,
282 (1975}.

where ~2s& and ~2p) are orthonormal sets of nitrogen
eigenfunctions. The term

~
other) takes into account the

possibility that the unpaired electron may be delocalized,
that is, it does not spend 100% of its time on the nitrogen
atom. We then approximate the wave functions with
atomic nitrogen Hartree-Fock wave functions. Using
Hartree-Fock wave functions and Eqs. (I) and (2), we

obtain A;„and 3,. „;„values for 100% 2s and 100% 2p
wave functions. A 100% nitrogen 2s wave function
yields A;„(HF} 548 G. A 100% nitrogen 2p wave
function yields A.,»so(HF} =17 G.

Our measured A;„of 11 G thus indicates that the un-

paired electron's wave function is about 2% 2s character.
Our A,„;„value is 12.5 ~ 1 G which indicates about
(74~5)% 2p character. The 2s spin density of the ni-

trogen dangling bond is so small that it may be account-
ed for by spin-polarization eH'ects; therefore, we may
assume that the orbital of the unpaired electron is in a
pure 2p orbital (or very near pure 2p orbital) on the cen-
tral N atom. Thus the localization on the central N
atom is (74~5)%. These values are characteristic of
many N dangling bonds in several systems.

In conclusion, we report the first definitive observation
of nitrogen dangling-bond centers in silicon nitride.
Computer analysis of the ' N hyper6ne parameters
shows that the unpaired electron's wave function is pri-
marily localized on the center nitrogen and is almost en-
tirely p in character. This observation may be of consid-
erable importance since it is the second fundamental in-

trinsic EPR center to be identified in silicon nitride.
We would like to thank J. Kanicki (IBM) for provid-

ing us with the nitride films. We are also indebted to
Joseph Bonner (Pennsylvania State University) for gam-
ma irradiating some of the nitride samples.
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