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Critical Fluctuations in High-Temperature Superconductors and the Ettingshausen Eff'ect
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%e study the fluctuation Ettingshausen efl'ect in a type-II superconductor using the time-dependent
Ginzburg-Landau equation. The free-fluctuation theory predicts a divergence in the Ettingshausen
coefficient at T=T,.2(H), in conllict with the recent data of Palstra et al. [Phys. Rev. Lett. 64, 3090
(1990)]. Including interactions through a self-consistent Hartree approximation eliminates the diver-
gence and provides a quantitative explanation of the experiments.

PACS numbers: 74.40.+k, 74.30.Ek, 74.60.Ge

Recently, Palstra et al. ' have made interesting obser-
vations of the Ettingshausen effect in single-crystal Y-
Ba-Cu-O. The Ettingshausen effect is a transverse ther-
momagnetic effect in which a magnetic field is applied in

the z direction, a constant current supplied in the x
direction, and a temperature gradient is measured in the

y direction. This effect is typically quite small in the
normal state. However, a substantial effect is produced
in the mixed state of a type-II superconductor due to the
transport of entropy by vortices, which move transverse
to the applied current. The mean-field theory of this
effect has been considered by Maki who found that
the Ettingshausen effect vanishes for T & T, (Hq) due to
an absence of vortices, and increases linearly with

T,2(H) —T for T ( T,2(H), where T„2(H) is the mean-

field transition temperature. (At sufficiently low temper-
ature the effect must also vanish due to the vanishing en-

tropy. ) However, Palstra et al. ' find a large temperature
gradient well above T„2(H), indicative of significant
thermal fluctuations.

In this paper we study the fi'uctuation Ettingshausen
effect both above and below the mean-field transition
temperature. We calculate the Ettingshausen coefficient

ay„using the Lawrence-Doniach model of layered su-

perconductors. If only Gaussian fluctuations are con-
sidered, then a„ is predicted to diverge at the mean-field
transition temperature, in conflict with the experimental
results. One of our important conclusions is that in-
teractions between the fluctuations must be considered in

order to obtain even qualitative agreement with the ex-
perimental results. To do so, we apply the Hartree ap-
proximation to treat the quartic term in the Ginzburg-
Landau Hamiltonian. In the limit of high magnetic
fields, we find a smooth crossover from a regime dom-
inated by two-dimensional Gaussian fluctuations for
T & T,2(H), to the mean-field results for T ( T,q(H),
with no intervening divergence, in agreement with

the experimental results. The absence of such a diver-

gence is due to the one-dimensional character of the
fluctuations —fluctuations transverse to the applied mag-
netic field are effectively "frozen out, " as was first dis-
cussed by Lee and Shenoy. Our approach is inspired by
studies of the specific-heat transition in a magnetic
reld. '-'

In order to model the layered structure of Y-Ba-Cu-O,
we use the Lawrence-Doniach model, which consists of
superconducting sheets separated by a distance s, with a
Josephson coupling between the sheets. The Hamiltoni-
an is
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where m —=m, b and m, are the effective masses in the a bplane an-d along the c axis, respectively, a =ap(T/Tp 1),
with Tp the bare transition temperature, all derivatives and coordinates are in the a-b plane, and the applied field is as-
sumed to be perpendicular to the a-b planes. The terms for the field energy have not been displayed. We introduce re-
laxational dynamics through the equation of motion
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where (Ii is the scalar potential and ( is a noise term chosen to have Gaussian white-noise correlations: ((,*(x,t)
xgi(x', t')) =2kt)TI p i)(t t )8(x x )t$i. The heat current in the y direction is related to the electric field in the x
direction via the transport coefficient a„,, =(J, )/F„This coefficient can. be .related to the experimentally measured
quantity U, by a,, =K(dT/dy )/(dV/dx) =U~/(I)p, where (tp =hc/2e is the flux quantum; U, is plotted in Fig. 2 of Ref. 1.
Therefore, we compute the heat current which is given by
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where C„(x,t;x', t') =(y;(x, t)y,*(x',t')) is the full none-

quilibrium correlation function. The Ettingshausen coef-
ficient is obtained by expanding the correlation function
to linear order in the electric field. We choose the elec-
tric field to be in the x direction: @=—E,x; and the
vector potential in the Landau gauge is A =Hxy.

We first consider the Gaussian fluctuations, neglecting
the quartic term in the Hamiltonian. The Hamiltonian
is diagonalized by eigenstates consisting of Bloch waves
in the z direction and Landau levels in the x-y plane.
We then solve Eq. (2) using a standard Green's-function
approach, hence determining the correlation function to
linear order in the electric field. The correlation function
is used to calculate the heat current via Eq. (3), and
we find for T & T„z(H) the Auctuation Ettingshausen
coefficient "

+ 2k8T
a,+.„= dh g [f„+i (e, h ) f„i ltz—( e, h)],

/os n ~0
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where
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f„(e,h) =
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where iV is a cutoA; g, b( 0) =(h, /2mao)' and g, (0)
=(h /2m, ao)' are the zero-temperature correlation
lengths in the a-b plane and along the c axis, respective-

ly, e = T/To —
1 is the reduced temperature, h =H/

H;zb(0) is a dimensionless magnetic field, H;z(0) =go/
2trg, b(0) is the zero-temperature critical field, and d =s/
2$„(0) is a dimensionless interplanar spacing (the three-
dimensional limit being obtained by taking de 0, and
the two-dimensional limit being de»1). Below T,z(H)
the Ettingshausen coefficient is computed by linearizing
the equation of motion about the mean-field solution.
The appropriate mean-field solution is the Abrikosov flux
lattice; however, this solution is unwieldy so we resort to
the approximate uniform order-parameter solution

i yi = —a/b. ' It follows that the fluctuation Et-
tingshausen coefficient below T,z(H), a„,„, is given by
Eq. (4) with a —2a. Therefore, for T ( T,z(H),

(6)
where the first term is the mean-field result due to
Maki,

[T T,z(H) ], (7)—
4z 1.16 2ic —

1

where LD=1 in the dirty limit, and where x. is the
Ginzburg-Landau parameter.

There are several points to be made about the above
results. First, note that the order-parameter relaxation
time I 0

' is absent from the expression for a, , Second,
in the mean-field case the transverse heat current may be
expressed in terms of the flow of entropy:

is the equilibrium mean-field entropy per vortex line (per
unit length)' and u =cE /B is the vortex velocity. '

These two observations suggest that the fluctuation Et-
tingshausen coefficient (a kinetic quantity) may also be
written in terms of the equilibrium Auctuation entropy (a
thermodynamic quantity). In order to verify this con-
clusion, we have calculated the fluctuation entropy using
standard methods, ' and find that the fluctuation heat
current [for T & T,z(H)] may indeed be written as

(J,, ) =TSv 2—H dHcz
(9)

T dT
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where Sv is the Auctuation entropy per vortex in either
the low- or high-field limits. It is interesting to note that
the Auctuation specific heat, c~ = —(B/Po)TBSv+/8T,
may be deduced from a measurement of a, ,„.

Although the expression for a, ,„given by Eq. (4) is
rather cumbersome, it is easily evaluated in the high-
field limit, or for temperatures close to T,z(H). In this
limit the sum is dominated by the contribution from the
lowest Landau level, which corresponds to keeping the
most divergent term in the sum in Eq. (4). Thus, we

have
kaT dh

(tos [e„(1+d'e„)]'' ' (10)
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where ) =g, (0)/g, t, (0) is the anisotropy parameter, Ar
=go/16tr kgT is a thermal length, and we have used the
fact that in mean-field theory b =2trx (2he/mc) . ' In
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where we have defined t. H ——e+h. The mean-field transi-
tion temperature T,z(H) is defined by eH(T„z) =0, so
that close to the transition we have

eH = ' [T —T,z(H)l.
dH, z

cz

Therefore a~, „diverges at the mean-field transition tem-
perature; in two dimensions the divergence is of the form
(T —T„z), while in three dimensions it is (T
—T,z) 't . Also note that the size of the Auctuation
scales with magnetic field. There is no evidence for such
a divergence in the data of Ref. l.

Given the discrepancy between the Gaussian calcula-
tion and the data, we are led to consider the effect of in-
teractions between the fluctuations. The simplest ap-
proximation is to treat the quartic term using a self-
consistent Hartree approximation, and this is imple-
mented by replacing the quartic term i y;i by
2(iy;i )i@;i . The energy of the magnetic field can be
absorbed into a renormalized coupling b„=b (1 —1/
2x ). This leads to a self-consistent equation for the
coefficient of the quadratic term, a =a+b„(iy;i ). We
consider only the lowest Landau level, so that the self-
consistent equation in our dimensionless units becomes
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this approximation a~ is obtained by replacing eH by FH

in Eq. (10):
kBT dh (13)
yos [;„(I+d'g„)]'"

The Ettingshausen coeScient is thus obtained by solving

Eq. (12) for ZH as a function of eH, and substituting the
results into Eq. (13). Equations (12) and (13) are the
main results of this paper.

Before comparing our approximation to the experi-
mental data, several comments are in order. (1) In this

high-field Hartree approximation there is no finite-
temperature transition to a state with (y;)&0, which
would be signaled by F&=0. ' Hence, there is only a
crossover behavior from a regime dominated by two-

dimensional Gaussian fluctuations for temperatures far
above the mean field T,2(H), to three-dimensional
Gaussian fluctuations at temperatures T—T,2(H), and
finally to the mean-field regime which consists of well-

defined vortices for temperatures below T,&(H). (2)
Note that a, , exhibits scaling behavior in either the
two-dimensional or three-dimensional limits. ' In two
dimensions,

kit T sAT

dos (2x' —1)g„(0)h

while in three dimensions,
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The scaling functions F2o(x) and F30(x) have the
asymptotic forms F2o(x),F30(x)——x for large nega-
tive values of x; reinstating the units, this leads to a, , in

the regime well below the mean field T,2(H),

&
Hartree dH„2" [T„(H)—T].

8z(2tr2 —1) dT
(16)

This expression differs from the correct mean-field result
Eq. (7) by a factor of 2LD/1. 16; the Hartree approxima-
tion does not incorporate the correct vortex lattice struc-
ture below T,2(H). For large positive values of x,
F2o(x) -x ' and F30(x)-x ', which reproduces the
Gaussian results. Even though the Hartree approxima-
tion does not produce the correct mean-field result, we

expect that the above scaling forms would still hold in a
higher-order approximation. However, we note that for
intermediate values of the dimensionless interplanar sep-
aration d, there is no simple scaling form for a~,„. (3)
The reader should compare the calculation outlined
above with recent attempts to understand the "magnet-
ic-field-induced broadening" of the resistive transition in
Y-Ba-Cu-0 (Ref. 17) using extensions of the Hartree
approximation. ' Our calculation could also be extended
to higher order; however, a consistent calculation beyond
the Hartree approximation requires consideration of ver-
tex corrections in evaluating a~, „.'' (4) We have so far
neglected vortex pinning, which will be important in the
vicinity of the vortex-glass transition. '

Finally, we compare our theory with the data of
Palstra et al. ' First, we attempt to fit the data by the
scaling forms given in Eqs. (14) and (15). We perform
a linear fit to the data in the region where we expect the
mean-field theory to apply, and thereby obtain the mean
field T,2(H). We plot U~ vs eH =[1/H„'2(0)](dH, 2/

dT)(T —T,2), where we take dH, 2/dT=7 T/K and
H;i(0) =400 T from Ref. 1. Next, the resulting curves
are scaled according to Eq. (14) or (15); we find a much
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!
better fit with the two-dimensional scaling form of Eq.
(14). The result of this fit is shown in Fig. 1. While the
data appear to collapse onto a single curve for t. H )0,
the scaling form does not hold for negative values of eH.
This breakdown of scaling is due to the magnetic-field
dependence of the mean-field slopes of the U, vs-T-
curves; this field dependence is not yet understood, but is
most likely related to the field-induced broadening. '

Second, we have solved explicitly the Hartree equations
(12) and (13). We have chosen a magnetic field of 7.5
T; an eA'ective value of x is obtained by equating the
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FIG. 1. The experimental data of Ref. 1 of the transport en-

ergy U, as a function of the reduced temperature eH =ll/
H;((0)](dH, ./dT) IT —T,q(H)] for diff'erent magnetic fields.
As suggested by the two-dimensional scaling form of Eq. (14),
both axes are scaled by h 'i, where h:H/H;t(0) is the re-—
duced magnetic field. The fitting procedure is discussed in the
text.
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FIG. 2. The transport energy U& in the Hartree approxima-
tion (solid line) calculated from the solution of Eqs. (12) and

(13) in the text, and compared to the data of Ref. 1 for a field

of 7.5 T (open triangles). The parameters are H„')(0) =400 T,
s =12 A, and g, (0) =2 A. Also shown are the results of the
Gaussian calculation (dashed linc), Eqs. (6) and (10). The
fitting procedure is discussed in the text.
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