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Korringa-Kohn-Rosioker (KKR) theory is formulated in a way that is independent of the assumption

that the potential is of the muffin-tin type. The resulting form of the KKR equation retains the separa-
tion of its dependence on the lattice structure and on the potential.
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One of the most useful tools in the calculation of the
band structure of the energy spectrum of electrons in

solids is the KKR equation due to Korringa' and Kohn
and Rostoker. This equation was first formulated for
muSn-tin models, in which there is a sphere 5 in each
unit cell of the periodic crystal such that the potential is

spherically symmetric (central) in S and constant out-
side S. The first of these assumptions fails, for example,
for molecular crystals with covalent bonds, and the
second also is often unrealistic. (Both assumptions fail
for a single-site potential whose range is larger than the
interior radius of the unit cell, even if that potential is

central, because the eff'ective potential in each cell, which

is the sum of the single-site potentials from all cells, is

then noncentral. )
In recent years a number of eff'orts have been made to

extend the KKR theory beyond the muffin-tin model, to
allow the potential to be noncentral in S (this might be
called a banged uIt mug-n tin) and to drop the assump-
tion of an interstitial region in which it has a constant
value. ' These attempts have been beset by the use of
a~k~ard and inappropriate mathematical techniques. '

The purpose of the present Letter is to formulate the
KKR theory in a manner that is independent of the basis
vectors chosen and independent of whether the potential
is of the muffin-tin kind or not. The derivation is also
applicable if the molecular potentials overlap; the poten-
tial in the unit cell then includes that from the interior
molecule and all the tails of those originating from the
outside. This paper does not claim to provide direct as-
sistance to numerical band calculations, which are im-

portant for applications; its aim, rather, is to provide an
unambiguous and well-defined basis from which to start
studies of band properties and approximation schemes.
While the resulting equation itself is not new, its deriva-
tion is considerably simpler than those given by oth-
ers.

It is a priori clear that the use of spherical harmonics
as basis functions is not well suited to a scattering prob-
lem in which the potential has no spherical symmetry. '

An operator formulation lends itself, in actual calcula-
tions, to the use of any convenient choice of basis. It is

therefore best to leave that choice until the end, rather
than start out with it. There will be no approximations
in the derivation and formulation of our general version

of the KKR equation, and that equation cleanly
separates the dependence on the lattice structure and on
the potential.

The basic equation of Ref. 2 for the electronic Bloch
wave function in a crystal is the homogeneous linear in-

tegral equation

y(r) = dr'G(r, r')V„(r')y(r'), (1)

~here 0 is the unit cell of the crystal, di' is the volume
element, and G(r, r') is the Hermitian Green's function

1 ~ cos(tc~r —r' —R~)
4~ R«

Here tc= JE and the sum runs over the set 7' of lattice
translations

7': = fR C R:R =s 1al+sqa2+s3a3, s; =0, ~ I, ~ 2, . . . j,
where a; are three fundamental translation vectors of the
lattice.

It was shown in Ref. 2 that if y(r) is a solution of the
Schrodinger equation with the potential

V(r) = Vn(r), r C 0;

V(r+R) =V(r), VR C 7'

and the property that y(r+R) =e'" "y(r), iIR 6'r,
then it satisfies (1). Conversely, Eq. (1) is an integral
equation for y(r), r C O. Given a solution yn of (1) for
r C 0, Eq. (1) at the same time explicitly defines a func-
tion y(r) for all r 6 IR in terms of iltn. The function
thus defined coincides with yn for r 6 0, it has the
periodicity property y(r+R) =e'"' yR(r), itR e 'T, and
it satisfies the Schrodinger equation with the periodic po-
tential (3). Thus a necessary and sufficient condition for

y to be a Bloch solution of the Schrodinger equation
with the potential (3) is that it satisfies Eq. (1).

Following Kohn and Rostoker we write

(4)

where 60 is the principal-value Green's function

G (,)
1 cos(ic~r —r'~)

4~ fr —r'f
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and D is a solution of the free Schrodinger equation for
r E Q. We may then write in operator notation

I —GV„=[1—DV„(l—GDV„) '](t—GDVg) .

Since E is assumed to be positive, the operator I —opVg
is invertible. Thus (1) is equivalent to the equation

(t DK)—y =0,
where p = (li —GDV„)y and K = V„(X—GOV„) ' is the
usual K operator for scattering by the potential V&,
which vanishes outside the unit cell Q. The necessary
and sufficient condition for the existence of a nontrivial
solution of Eq. (5) is that

pressible in the simpler form

D(r, r') = dn g)(n)e'""
4z ~

R(n, n') = g P„(n) tanb„P„*(n') . (10)

However, this representation is valid only inside a sphere
inscribed in the unit cell and cannot be used unless the
potential is assumed to be constant in the interstitial re-
gion.

The on-shell K matrix can always be expanded in a
series (which converges strongly in the mathematical
sense) on the basis of its orthonormal eigenfunctions P„
in the form

det(I DK) =0—, (6)

where det is the Fredholm determinant. (Precise condi-
tions on V& under which this Fredholm determinant is
well defined as an absolutely convergent series will be
proved elsewhere. ' )

Now it is only the restriction of D to the interior 0 of
the first unit cell that enters into Eq. (6). For r, r'E 0
the function D(r, r') satisfies the free Schrodinger equa-
tion both as a function of r and as a function of r'; there-
fore it must be expressible in the form

Here the B„are the eigenphase shifts, which are real and
depend on the energy only. ' The functions P„are the
same as the eigenfunctions of the 5 matrix, and some of
their properties are discussed in Ref. 19; they will also
generally depend on the energy.

If we then define the infinite-dimensional matrix A
with elements

A„:= dn dn'P„*(n)$(n, n')P (n'),

then Eq. (8) becomes
D(r, r') = dn dn'$(n, n')e'" "'

(4n)' " (7)
2(E,k) =det(1+ x ' A tanb) =0, (12)

r, r EQ,

where the trace on the right-hand side is only over the
unit sphere (that is, integrations over all solid angles)
and 8 is the on the energy -shel-l K mat-rix

Jy(n n') = — dr dr'K(r, r')e'"
4~~ 4

Therefore (6) becomes

2(E,k): =det I+ SR =0.1

4z
(8)

This equation is the general version of the KKR equa-
tion. The K matrix depends on the potential in a single
cell only and it is a function of the energy E; on the other
hand, 2) depends on the structure of the lattice only and
is a function of both E and k, as (2) shows. Thus (8)
determines the relation between E and k, and the depen-
dence on the lattice structure, on the one hand, and the
potential, on the other hand, are separated. '

Since D(r, r') is a function of r —r' only, it is also ex-

where both integrals extend over all solid angles. The
Fredholm determinant det(X —DK) can be expressed en-

tirely in terms of tr(DK)", n =1,2, . . . (see, for example,
Ref. 16). If we insert (7) into these traces, we obtain

' n

tr (DK) "= tr — SRl

4x

where 6 is the diagonal matrix with the eigenphase shifts
on the diagonal. The diagonal elements of tanb tend to
zero as n ~ (nonuniformly in the energy); if they are
set equal to naught for n )N for some N (which may
have to depend on the energy), then 2(E,k) becomes
the ordinary determinant of a finite matrix and (12) is
equivalent to the equation

det(A+ x cotb) =0. (i3)

In the case of a central potential the eigenfunctions of
R are the spherical harmonics, the eigenphase shifts are
the ordinary phase shifts, and the matrix A becomes the
matrix A with elements Al .I ~ of Ref. 2. In that case
Eq. (13) is identical with Korringa's version of the KKR
equation. '

There remains the question of how to calculate the
kernel 2)(n, n'). Let us define the family of normal
Hilbert-Schmidt operators T(a): L (S') L (S ),
where S is the unit sphere, so that T(a)f =g stands for

dne"" "f(n) =g(n') .4~~
The eigenfunctions of T(a) are the spherical harmonics
and its eigenvalues are i jt(a), where jt is a spherical
Bessel function. If we regard D(r, r'): =D(r, r';r", r"') and
$(n, n') as the integral kernels of operators and r and r'
as parameters, then Eq. (7) can be written in the form

D(r, r') =T(xr)2)T'(xr'),
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which would be formally solved by

2) =T '(xr)D(r, r')T '(xr') . (i4)

T '(a, n, n') =pi '[ji(a)] 'Yt (fi) Yt'*(fi') (i6)

is the same as the problem that arises in the use of the
matrix A of Ref. 2.

Using the expansion (15) and defining the matrix K
with elements

4z ~
~lm, l'm' ~ Ulm, n tannin Un, l'm' s

n

where

Ut „.=„dn Yt *(fi)P„(fi),

we may also write Eq. (12) in the form

'Z(E, k) =det(1+ x 'AK) =0. (i7)

We may similarly proceed with (9). Set D(r, r'): =D(r
—r'), D(r): =D(r, r"), and regard D(r, r") and 2)(fi) as
vectors, so that in operator notation

D(r) =T(xr)$.
Use of the eigenfunction expansion (16) then leads to the
inversion

X)(fi) =QDLMYL (fi),
LM

where the coefficients 2)LM are given by Eq. (A2.9) of
Ref. 2.

It should be noted, however, that use of an angular

However, since the operator T is compact, its eigenvalues
accumulate at the origin and thus zero is in its spectrum.
Therefore its inverse, if it exists, is not a bounded opera-
tor. What is more, if a is such that for some non-

negative integer l we have jt(a) =0, then zero is a point
eigenvalue of T(a) and thus an inverse of T(a) does not
exist. Note that contrary to its appearance the left-hand
side of (14) is independent of r and r'. Therefore r and
r' may be chosen so that zero is not a point eigenvalue of
T(xr) or T(Kr').

Expansion of the directional dependences of D and 2)
on the basis of the eigenfunctions of T, the spherical har-
monics, leads to the expression (A2. 5) of Ref. 2 for the
infinite matrix A with elements Ai i . It is the pres-
ence of the factor Ijt(xr)jt(xr')] ' in that expression
which produces an element of possible instability in the
series

l l'

2)(fi, fi') = g g g Yt (fi)Ai„, t YP'*(n') . (15)
l, l' 0 m —l m' —l'

At the same time, it means that the truncation at maxi-
mal angular momentum L may be sensitive to the choice
of L. In other words, the problem of using the formal in-

verse of T(a) given by its expansion

momentum basis for non-mu5n-tin potentials leads to a
variety of known convergence problems ' about which
this paper has nothing to say. It would clearly be desir-
able to find a representation of the function S that does
not rely on an angular momentum expansion.

I am indebted to Professor James Swihart for Ref. 11
and other references that led to, and to Professor Allan
MacDonald for a useful conversation. Part of this work
was supported by a grant from the National Science
Foundation.
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