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Large-Order Behavior of the Perturbation Series for Superconductors near H, z
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The perturbation series for superconductors near 0,2 are studied in the two- and three-dimensional
Ginzburg-Landau model. The large-order behavior is discussed first oa a theoretical basis by an instan-
ton method of Lipatov type. The results are compared with an eleventh-order calculation in 2D and a
sixth-order one in 3D and show good agreement with the theoretical prediction. The conjectures based
upon an Abrikosov lattice configuration seem to be ruled out.
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The discovery of the high-temperature superconduc-
tors has renewed interest in fluctuations in quasi-two-
dimensional superconductors. Type-II superconductors
have an Abrikosov vortex structure under a magnetic
field and the vortex structure has been observed also for
a high-temperature superconductor in a sufficient low-

temperature region. However, near the upper critical
field H, 2, the observation of Abrikosov vortex structure
has not been reported, and a large fluctuation region ap-
pears near the transition temperature and H, q.

In a strong magnetic field, the specific heat has a
universal scaling form; the reduced temperature is scaled
by a magnetic field. The superconducting fluctuation
propagator in Ginzburg-Landau theory is quantized and
the n =0 lowest Landau level provides the dominant con-
tribution to the fluctuation in a strong magnetic field.
This universal scaling function of the specific heat has
been discussed by perturbation series' for the Ginz-
burg-Landau model in a magnetic field. The application
to the high-temperature superconductor is of interest.

The specific-heat perturbation series for the n =0

lowest Landau level is an asymptotic series. The low-
temperature behavior (strong-coupling behavior) is ob-
tained by the Pade or the Borel-Pade extrapolation
method for this perturbation series. In an asymptotic
perturbation series, the large-order behavior is governed
by the existence of a tunneling or instanton solution of
the classical equation of motion for a negative coupling
constant. In type-II superconductors near H, 2, the Abri-
kosov triangle-vortex solution has been considered to be
the classical solution relevant to the large-order behav-
ior, since the lowest-energy configuration is a triangle-
vortex lattice with a mean-field approximation. Ruggeri
and Thouless have conjectured for this reason that the
large-order behavior is related to the Abrikosov ratio
pA =(ItirI )/(I@I ), which is evaluated as 1.16. We will
show that our results do not support this conjecture.

We consider in this paper the large-order behavior of
this perturbation series by more extended calculations
and compare them to a new theoretical analysis of the
instanton solutions. The free energy of the Ginzburg-
Landau model is given by

F(y) =(I/2m)
I ( iQv —2eA) —YI'+al v I'+ 2 pirl'

We use the 6 =kit =c=1 units. By the choice of A = (O, xH, O) the order parameter y(r) is expressed by

' 2

y(r) =gga~ k(LyL, ) ' (2eH/tt) ' exp(iqy+ikz)exp —eH x-
q k
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where av k is a complex field, and Ly, L, are the lengths of the system. The free energy of (1) is written by
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The problem reduces to the functional integral about the
complex variable aq

The Abrikosov solution is easily obtained by the as-
sumption that a~ in (2) has a 8-function form, a~
=Q„ t)(q —»(n), and that the solution has a periodic lat-
tice structure. The Abrikosov solution is given by

x&k, +k, k +k q, +q, q +q aq, k, aq k aq k aq k

C„=C„+2,

(r) ~ C ein).ye
—((/2)(x —in)'

g8' e

(3)

(4)

where k =3't vtr for the triangular-vortex lattice. From
this equation (4), the Abrikosov ratio p~ is evaluated as
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1.16.
In a two-dimensional perturbation about P, the Gauss-

ian integral about a~ I, (k is set to zero) reduces to a

counting problem. The two-dimensional free energy f&D
is expressed in the following perturbation series:

TeH a
Gi@ in +f2o(x)

L, z zT (s)

fpn(x) = —g ( —4x)" -g C.x",1 (6)
graph TG

where T is a number of the Euler paths and G is a sym-

metry factor. The scaling parameter x is defined by
PeHT/2rcL a . We use a new reduced relative tempera-
ture a instead of aH, since the renormalization of the
Hartree term is included, aH =a+ (e/2m)H =a(1
—4x) . The definition of x manifests the scaling a by a
magnetic field H. For example, the transition region of
the specific heat is scaled by vH. The perturbation
series of fiD(x) is an asymptotic expansion. The large-
order behavior of this series is important for the study of
the low-temperature region.

We now derive the asymptotic behavior theoretically.
The free energy of (3) in two dimensions becomes, by
the use of the rescaled quantities, bq =((2rrT/aHLy)
x y'~i] '~b'av, y= 1/4eH, q is scaled by I/JZ:

& =„dq lb, I'+ dq ~ dqzdqidq4b„bq*, b~, b~, exp' pq; ——pq, .

7r
"

2

O'1+92.q3+q4 (7)

We shall follow Lipatov's method ' and determine the
large-order behavior of the expansion in powers of x
from the nature of the tunneling (or instanton) solution
to the classical equations of motion. These equations
have a class of solutions of Gaussian type,

2

b = e (8)

where C and cr are parameters which will be determined
later. By further rescaling, C =D(2cr/rr) '~", the action A

of Eq. (7) becomes, after integration over the q s,

~(D, ~) = lD l
'+ [xJ~/(I+ ~)] lD l'. (9)

The definition of x differs from (6) using aH instead of a
which is conveniently used for the perturbation series.
However, the large-order behavior is not affected by this
difference, and we use the same notation as x. Up to
now, D and cr are free parameters; the leading large or-
der is related to the maximum value of the coefficient of
x with respect to cr. The coefficient Vcr/(I+cr) takes a
maximum value of 2 when o equals unity. Then the
remaining procedure for the calculation of the large or-
der reduces to the usual derivation. ' We consider the
following quantity I, which generates the nth order in

i perturbation theory,

I= dD) exp( nin—x —D —
—,
' xD ) . (10)dx

4 X
The integration over x runs around the cut on the real
negative x axis, and we obtain the large-n behavior from
the saddle-point equations for x and D:

n/x+D /2 0, (»)
D+XD =0. (i2)

The solutions x= —1/2n, D =2n give the large-order
behavior

I—(n/e) "(—1)"2". (13)
Using Stirling s approximation formula, the coefficient of
( —1)"n! is 2" instead of the Ruggeri-Thouless-con-
jectured value (2x1.16)". This difference was to be ex-
pected since we are looking at the singularity of the free
energy at the region in the complex H plane, whereas the
transition from a homogeneous to an Abrikosov lattice,
which was used by Ruggeri and Thouless, is a singularity
at the finite value of x, which corresponds to H, z.

In the three-dimensional case, we start again from the
free energy (3) in the thermodynamic limit, rescale

1

q q44eH and k k+2maH, and obtain
fO aHL L

A =— F(y)d r = J8meHaH dq dk 1 aq, t, l (1+k )
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As before, we obtain a classical solution with a Gaussian dependence on q,

aq, a =bke (is)
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and this gives an action
~ I/2

Afbj = +8meHat/ dk~b»~ (1+k )
2a (2n) 'T ~J
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We go now to real space,

b(t) = b»e'"dk,
assuming that b(t) is real, and rescale b(t)

i/2
(2z) T(20) '

a/32(2m) I/2( H) 1/2 I/2

and obtain

b(t)

(i7)

b(t), (18)

H= —'(p'+q )+ -'xq (20)

A(b) —,
' dt(b (t)+b (t))+ —,'x dtb (t). (19)

One recovers here the (imaginary-time) action for a
one-dimensional anharmonic oscillator with Hamiltonian

In three dimensions, we use a different definition for a
scaling parameter x, x PeHTv'2m/8/rat/. The differ-
ence is due to the appearance of the k integral in three
dimensions. This also manifests the scaling behavior be-
tween aH and H. The large-order behavior of the per-
turbation series has been studied long ago for this prob-
lem, ' and the result is that the coefficient of x"
behaves for large n as ( —1)"n!(—', )". This completes
the derivation of the large-order behavior in three di-
mensions.

We have extended the calculation by Ruggeri and
Thouless up to x" which was done before up to x in the
two-dimensional case,

f2n(x) = —2x —x2+ x3 — x +471.396594517x38 3 1199 4

9 30
—6471.562 57496x + 101 279.327 846x —1 779798.787 59x

+34 709 019.6144x —744093 435.668x ' + 10373 276492.7x " . (2i)

The calculation was done with a computer program
which generates all relevant graphs by a tree-sorting
method. The symmetry factor G in (6) is obtained au-

tomatically by counting all the combinations. The num-

ber of Euler paths T is evaluated by the determinant of
the adjacency matrix which represents the corresponding
graph. The ratio C„/nC„~ is given in Table I and is

also plotted in Fig. 1 as a function of I/n If C„ha.s an

asymptotic form, C„=n ~ & a "n c for large n, this ratio
becomes a(n/(n —I)1 =a[1+b/(n —1)1, the value at
I/n =0 gives the value of a, and b is estimated from the
slope of the line.

Contrary to Ruggeri and Thouless's conjecture, the
value of a deviates significantly from the conjectured
value 2X1.16 which is indicated by an arrow in Fig. 1.
In Fig. 1, the extrapolation line is almost linear. The end

TABLE I. The ratios of the coefficients in Eq. (21).

C, /nC, —i

point of the estimated line deviates slightly from 2, but
we consider that this is caused by a linear extrapolation.
Therefore, we see the agreement between our theoretical
estimate (13) and the eleventh-order perturbation about
the value of a as 2.

2.5—

I

V

C

U

11
10
9
8

7
6

2. 125 766
2. 143804
2.166850
2. 196646
2.235 700
2.288081

0.1
1 /n

FIG. I. C,/nC, ~ vs I/n The ratios. in Table I are plotted.
The straight line is a guideline. The arrow shows the predicted
value of Ruggeri and Thouless, 2x 1.16.
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The lower bound for the value of C„ is obtained as

n!2"Jn (2e / Jz) (
~ C„~ . (22)

This lower bound becomes nI2 "n ' x0.03406. If we as-
sume that a=2 and b= 2, the coefficient c of the
asymptotic behavior is estimated from (21), c =C„/
n!2"n'~. The estimation for c becomes c=0 06.096(n
=8), 0.06227(n=9), 0.06332(n=l0), 0.06417(n
=ll). Therefore, our numerically estimated value is
indeed larger than the lower bound (22). For the three-
dimensional case, we compare our theoretical estimate
with the perturbation series up to sixth order, evaluated
by Ruggeri and Thouless. From the ratios C„/nC„~ for
n=5 and 6, we find that our estimated value a = —', is

also consistent with the explicit calculation.
From our results, we conclude that the Abrikosov

triangular-lattice solution cannot be detected in large
perturbation order. As we have shown, the Abrikosov
solution is not related to the perturbation series ex-
pressed by Eq. (22). Our discussion is based upon the
Ginzburg-Landau model, which does not take account of
vortex-vortex interactions. This vortex-vortex interaction
may be important for the existence of the vortex lattice
structure. What we have shown in this paper is that
there is a region near H, 2 where the fluctuation is large
and that the Abrikosov vortex lattice is not stable. This
may be related to the apparent unobservability of the
vortex lattice in high-T, superconductors near H, 2.

It is interesting to note that the similar large-order be-
havior appears in the perturbational calculation of the
density of states in the lowest Landau level. ' ' The
same Euler-number factor appears in the perturbation.
In this case, the large-order behavior can be obtained by
the exact recurrence equation. ' In this density-of-states

problem, the parameter a is also an integer in large per-
turbation order.
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