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Wetting Transitions in a Cylindrical Pore
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The wetting behavior of two-phase systems confined inside cylindrical pores is studied theoretically.
The confined geometry gives rise to wetting configurations, or microstructures, which have no analog in
the well-studied planar case. Many features observed in experiments on binary liquid mixtures in porous
media, previously interpreted in terms of random fields, are shown to be consistent with wetting in a

confined geometry with no randomness.

PACS numbers: 64.60.—i, 47.20.Dr, 47.55.Mh, 68.45.Gd

Binary liquid mixtures inside porous media have at-
tracted considerable attention because of their rich be-
havior, potential applications, and proposed connection'
to the random-field Ising model. Experiments on such
systems>~> display a variety of results, but two general
features consistently emerge: (i) There is metastability
and, correspondingly, strong history dependence, deep
within the two-phase region; and (ii) macroscopic phase
separation does not occur, even far inside the coexistence
region of the bulk mixture. Although these features are
qualitatively consistent with the random-field model,
they are typically observed far from the bulk critical
point, where the model is not expected to apply.' Here,
we directly consider the phenomenon of wetting, which
plays an important role in porous media. It is notorious-
ly difficult, however, to characterize the contorted
geometries of porous media, which, in turn, must
influence the wetting behavior.® We have ventured away
from the well-studied planar case’ by examining wetting
in an idealized geometry, namely, a single cylindrical
pore. We have derived a wetting phase diagram and
have found that the experimentally observed features, (i)
and (ii) above, are qualitatively consistent with our mod-
el, which contains no randomness.

Previous theoretical work on two-phase systems in cy-
lindrical pores has focused on the phenomenon of capil-
lary condensation,® where the pore fills up with a single
phase rich in the wetting component. A confined
geometry in contact with a bulk reservoir at two-phase
coexistence will contain only this single, wetting phase.
To achieve two-phase coexistence inside a confined
geometry, we impose the constraint of constant overall
composition (as in experiments on binary liquid mixtures
confined in sealed Vycor sampless), and obtain an ana-
log of the wetting transition. Since the constraint re-
quires the system to be finite, the phase transitions we
encounter are rounded.

A summary of our results for a cylindrical pore of ra-
dius r¢ and length L > r filled with a binary liquid mix-
ture is given by the wetting phase diagram of Fig. . We
assume throughout the case of fixed critical composition
and symmetric coexistence curve, so that the volume
fraction occupied by each phase is 3. In equilibrium,

there are two possible configurations, corresponding to
complete and partial wetting. The complete-wetting
configuration consists of a single bubble of length / and
radius 7. of the nonwetting phase B suspended in the
center of the pore. The bubble is surrounded by the wet-
ting phase a which coats the inside surface of the pore.
The partial-wetting configuration consists of regions of a
and B, each of length L/2, separated by an a-8 interface
stretching across the pore. The short capsules and plugs
depicted in Fig. 1 are long lived in that they coarsen
slowly with time. The possible connection of these
configurations to experimental observations will be dis-
cussed later.

A phenomenological calculation for the case of contact
forces, along the lines of Cahn’s argument,® showed that
the wetting transition temperature moves closer to criti-
cality in the cylindrical geometry.'® A more realistic ap-
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FIG. 1. Wetting phase diagram for a binary liquid mixture
confined in a cylindrical pore of radius ro, as a function of re-
duced temperature [t =(T. — T)/T. is positive in the two-phase
region] and inverse pore radius, a/ro, where a is a molecular
length. The three configurations of tubes, capsules, and plugs
are sketched (with the nonwetting phase hatched in), along
with the wetting transition (solid curve). Also shown are the
boundary between capsules and the tube (dot-dashed curve)
and the A=0 hydrodynamic stability boundary of the tube
(dashed curve). For small pores there is a direct transition be-
tween plugs and the tube, while for larger pores there is an in-
termediate capsule regime.
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proach, adopted here, is to include an effective interface
potential which decays away from the pore wall and to
calculate the corresponding wetting phase diagram. We
begin by constructing the free energies per unit length
along the pore (F, and F,,) for the two configurations
(complete and partial wetting). We assume that the
correlation length of the liquid mixture is not large com-
pared to the pore radius, so that a well-defined a-f inter-
face exists.!' Thus, we find that the free energies per
length of the configurations are given by

Fo2n=egrglo+AV(r)1/r, , (1)
Fpu/2m= % ¢sAaro. )

Here, ¢3= 1 is the volume fraction occupied by the g
phase, o is the a-B interfacial tension, AV (r) is the
effective interface potential, or free energy per unit area,
as a function of the inner radius r, and 4 and A, are
temperature-dependent Hamaker constants correspond-
ing, respectively, to the interface potential and the free-
energy difference of filling the pore with B instead of a.
The bubble radius r. is determined by the competition
between wetting forces, which favor a small radius, and
surface tension, which favors a large radius. We obtain
r by minimizing (1) and solving

V(r.)— rcﬂ

i =0. (3

ct+A

’(‘

The bubble length / is then fixed by the volume con-
straint r2l =¢prdL. There is an upper bound on the
length, / < L, or equivalently, a lower bound on the ra-
dius, r. = r,, where

re=-Jesro. 4)

We assume throughout that the wetting forces are van
der Waals in character and use V(r) and Fy,, calculated
within a pair-potential approximation.'? (Nevertheless,
we expect the phase diagram to be qualitatively the same
for forces which decay more rapidly than van der Waals
forces.) We have introduced a molecular cutoff a to
prevent an unphysical divergence at r =rg; in that limit
V(r) then approaches 1/(r—ro+a)?, the planar result.

The Hamaker constants and interfacial tension all
vanish at the critical point. The former vary with tem-
perature as A = Ar? and A>= 4,1, and the interfacial
tension varies as o == ogt", where ¢t =(7.—T)/T.. Note
that ¢ is positive in the two-phase region considered here.
The parameters 4, A,, and oy are material dependent; in
Fig. 1, we adopt A/cpa?=0.05 and A,/4=04."3 We
also use the exponent estimates u=1.264 +0.002 and
$=0.328 +0.004. '

With these ingredients, we obtain the wetting transi-
tion drawn as a solid line in Fig. 1 by equating numeri-
cally the free energies per length of the complete- and
partial-wetting configurations as a function of tempera-
ture and pore radius. Physically, the transition arises
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from the competition between surface tension and wet-
ting forces. Near the critical point, surface tension is the
weaker of the two because the exponent u is larger than
B; but the balance shifts as the temperature moves away
from criticality. We find that the wetting transition is
first order for realistic values of the parameter 4,/A4 and
moves closer to the bulk critical point as the pore size de-
creases.

With the equilibrium wetting transition now in hand,
we turn to new configurations characteristic of the non-
equilibrium behavior. In the partial-wetting case, we
consider long-lived “plug” configurations as shown in
Fig. 1, where a series of a-f interfaces stretch across the
pore to form short alternating plugs of the two phases.
In the complete-wetting case, we find a distinction be-
tween two configurations: the long-lived “capsule’ con-
figuration, consisting of a series of bubbles of the B phase
along the length of the pore, and the equilibrium “tube”
configuration. In the latter, the wetting force is so strong
that the B phase forms one long cylindrical bubble in the
center of the pore, with a radius given by the lower
bound r, in Eq. (4) above.

The boundary between the capsule and tube config-
urations is given by the dot-dashed line in Fig. 1. We
find the tube configuration when the wetting force is
strongest relative to surface tension, i.e., near the critical
point. As the boundary is approached from the capsule
side, the wetting force squeezes the capsule radius until
the capsules are forced to coalesce into the tube, which
cannot be squeezed further. Thus, the capsule-tube
boundary is reached when 7, approaches its lower bound:
r.=r,, where r, satisfies (3) and r, satisfies (4).'> Evi-
dently, the boundary is a direct consequence of the con-
straint of constant composition, and is not a true phase
transition. Note that for sufficiently small pores, the
wetting force is so strong that there is a direct transition
between plugs and the tube. For larger pores, however,
the intermediate capsule configuration appears.

We now consider how the long-lived capsule and plug
configurations can arise. One possibility is that they
might be formed by nucleating droplets after a quench
from the single-phase region into the capsule or plug re-
gimes. In this case, we would expect the length of the
resulting capsules and plugs to be on the order of the
pore radius. A second possibility is that capsules or
plugs could form from a Rayleigh-like instability of the
tube configuration, in which the cylinder of the B phase
breaks up into droplets to reduce its surface area. In
contrast to the case of an isolated cylinder where there is
always a Rayleigh instability, the new twist here is that
wetting forces from the pore walls can counter the desta-
bilizing effect of surface tension. From an energetic ar-
gument, we find that a cylinder of the B phase of radius r
enclosed in the pore is stable against small sinusoidal
perturbations of; the radius if A(r) > 0, where

An=72Y <
dr? r?

(5)
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For a long bubble of equilibrium length and radius 7,
given by (3), the condition A(r.) > 0 is always satisfied
and, consequently, an equilibrium bubble is always
stable. Now consider the stability of the tube con-
figuration with radius r, given by (4). The condition
A(r,;) =0 is shown as a dashed line in Fig. 1; at reduced
temperatures below the curve, the wetting forces are
strong enough to prevent the Rayleigh instability. Thus,
the tube configuration is always stable in the tube re-
gime, below the dot-dashed line in Fig. 1. Experimental-
ly, a metastable tube of radius r, can be created by a fast
temperature quench from the tube regime to the capsule
regime. If the quench is slow then the radius can adjust
smoothly to its new equilibrium value, r. > r, given by
(3), by draining the wetting layer of a. But if the
quench is faster than the drainage time,'® the tube can
remain hydrodynamically stable up to the dashed line in
Fig. 1, beyond which it will break up into shorter cap-
sules or plugs.

In order to estimate the size of the capsules or plugs
resulting from the breakup of the tube, we must go
beyond energetics and study the dynamics by solving the
linearized Navier-Stokes equation with moving boundary
conditions. For a perturbation of the radius efaztor
where z measures distance along the pore, the resulting
dispersion relation is

ox —g2[A(r)+0oq?], (6)

where A(r) is again given by (5). When A <0 the tube
is unstable, and the wavelength of the fastest growing
mode is Amax =27r0(20/Ar¢) 2. This provides a rough
estimate of the length of the capsules or plugs. The
dependence of Apa.x on A, or equivalently the quench
depth, shows that our model predicts a history-dependent
length distribution of capsules and plugs. This is con-
sistent with the experimental observations of metastabili-
ty deep in the two-phase region. For example, history-
dependent structure factors have been seen in several
scattering experiments.>'” Moreover, since the scale of
Amax is set by ro, our model predicts that a fast quench
yields phase-separated domains on a scale of the pore
size, rather than on a macroscopic scale. Note that this
differs from the random-field prediction that the domain
size and the thickness of the a-p interface should be the
same.

To see why complete phase separation is realistically
prohibited in our model, we have estimated the time
scale for the short domains to coarsen after being created
by a fast quench. For plugs and capsules, the usual
mechanism of Ostwald ripening is inhibited because their
curvatures, and hence Laplace pressures, are nearly in-
dependent of their length; we therefore expect plugs to
coarsen extremely slowly. The capsule phase, on the oth-
er hand, is able to coarsen by the coalescence of individ-
ually diffusing capsules. By estimating the drag on a
capsule in a pore of radius ro, we find the coalescence
time for capsules of radius r and length / to diffuse by

the distance of their spacing to be given by 7.oc/3/
(ro—r)?2. For capsules with r/ro=0.9 and / comparable
to the wavelength of light (say, 5000 A) in a 30-A-
radius pore, the coalescence time is on the order of an
hour. (The resulting 1-um-long capsules will take 8 h to
coalesce into 2-um capsules, and so on.) Thus, macro-
scopic phase separation is inhibited by kinetics. In addi-
tion, the capsule diffusion constant vanishes as r ap-
proaches ro, or equivalently, as the reduced temperature
t increases. Similar behavior was observed in dynamic
light-scattering experiments on a binary liquid in Vycor,®
where the internal dynamics slowed down as the temper-
ature moved further into the two-phase region.

Many of these features may persist in Vycor, which
consists of interconnected pores of average radius rough-
ly 30 A and length roughly 180 A.° In order to make
quantitative predictions, the presence of necks, connec-
tivity of the pore space, and variation of pore radius
must be considered. We expect, however, that configura-
tions analogous to our tube, capsule, and plug micro-
structures will still arise,'® and that transitions will still
be governed by the competition between surface tension
and wetting forces. Geometrical irregularities may help
destabilize the tube configuration, depressing the tube-
capsule transition to smaller reduced temperatures. The
tortuous geometry should have a more dramatic effect on
the kinetics; for example, it may alter the initial size of
the capsules following a quench and add a further steric
barrier to capsule coalescence.

We now discuss the extension of these ideas to related
phenomena. Our approach to wetting in a pore can be
applied to the outside of a cylindrical fiber. We find that
the equilibrium wetting layer on a fiber is always hydro-
dynamically stable (as shown above, the same is true for
a bubble of equilibrium radius). This result also holds
for wetting forces which decrease more quickly with dis-
tance than the van der Waals force assumed here.
Landau-Ginzburg calculations of wetting phase dia-
grams on the outside of a cylinder'*?® were therefore
justified in neglecting the Rayleigh instability. In the
case of a wetting layer thicker than its equilibrium value,
however, it has been shown?"?? that a Rayleigh instabili-
ty can occur.

Our approach also predicts new behavior in capillary
condensation.® One typically studies a liquid-vapor sys-
tem in a porous material in contact with a reservoir of
fluid, as coexistence is approached from the single-phase
region on the vapor side. At sufficiently small vapor
pressures, the equilibrium configuration is a tube of va-
por of radius r surrounded by a liquid layer which coats
the pore wall. As the vapor pressure increases toward
coexistence, this liquid layer thickens, and the hydro-
dynamic stability parameter A(r) [see (5)] decreases
from its initial positive value until it reaches zero at a va-
por pressure p =p,, where the Rayleigh instability devel-
ops. At the same pressure p =p,, a thermodynamic in-
stability develops and molecules rush in from the vapor
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reservoir to fill the pore with liquid.'? If the Rayleigh in-
stability develops faster than the thermodynamic insta-
bility, one might expect to see bubbles of vapor (similar
to capsules) trapped in the liquid.

In conclusion, this work extends the theory of wetting
on planar substrates to a confined geometry. In addition
to the rich behavior characteristic of planar wetting tran-
sitions, several new features emerge as a generic conse-
quence of confinement. Thus, our picture captures
salient aspects of wetting in true porous media, and
should provide a useful framework and stimulus for fu-
ture theoretical and experimental studies of wetting in
porous media.
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