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Harmonic Generation as a Probe of Dissipation at a Moving Contact Line
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We use the pressure generated by a small-amplitude oscillatory flow to probe the dynamics of moving
contact lines. By measuring the Fourier amplitude at harmonics of the applied frequency as a function
of the steady-state velocity, we are able to determine the velocity dependence of the excess dissipation
caused by the moving contact line. We find that the pressure drop associated with this dissipation scales
as a power of the contact-line velocity V as P.,„~V', with x =0.40+ 0.05. We discuss these results in

terms of recent theoretical models.

PACS numbers: 47.55.Mh, 47. 15.Gf, 68. 10.—m, 68.45.Gd

Spreading of Auids on solids is important in a wide
range of industrial and environmental processes. Exam-
ples include the application of coatings and the displace-
ment of one fluid by another in a porous medium.
Despite considerable effort, an understanding of these
processes has remained elusive. The central unsolved
problem is how the contact line, where the fluid interface
intersects the solid, advances.

The theoretical difficulty in calculating the dynamics
of a contact line is that the usual no-slip boundary condi-
tion at the solid surface leads to a logarithmic divergence
of the total dissipation. ' Two mechanisms for removing
this singularity have been proposed. (1) When the ad-
vancing fluid perfectly wets the solid, a thin precursor
film forms ahead of the contact line. The problem then
reduces to spreading of a bulk fluid on a fluid film and
the logarithmic divergence is cut off at the film thick-
ness. However, spreading of the precursor film is not
addressed. (2) If the advancing Auid does not perfectly
wet the solid, the fluid interface intersects the solid at a
finite "contact angle" 8. Slip is assumed to occur within

a length l from the contact line which again acts as a
cutoA' for the divergence. ' Recent simulations indicate
that slip may occur on molecular scales due to the
large stress near the contact line.

The typical experimental approach has been to
evaluate the dissipation through direct optical measure-
ments of the apparent dynamic contact angle Od. The
interface exerts a capillary force ycosod on the contact
line, where y is the interfacial surface tension. On a
homogeneous surface there is a well-defined static con-
tact angle 0, at which this force is balanced by wetting
forces on the substrate. There is an additional viscous
force F,, on a moving contact line. A dimensionless mea-
sure of the contact-line velocity V is the capillary num-
ber Ca =p V/y, where p is the viscosity of the advancing
fluid. At small Ca, capillary forces dominate viscous
eA'ects except within -I from the contact line. ' Thus F,,

can be determined from 8d measured far from the con-
tact line: F,. = y(cos8d —cos8, ). Heterogeneity on real
surfaces leads to contact-angle hysteresis —the inter-
face is static over a range of 8 from the "receding" angle
8, to the "advancing" angle 8, . Disorder also compli-
cates the relation between F,, and 8q as discussed below.

In this paper we present results of a more sensitive
kind of experiment which allows us to accurately deter-
mine the scaling of 8 with Ca. The capillary pressure
drop across the interface P p is measured as a function
of V. In a cylindrical tube of radius R, P,.~= —(2y/
R)cos8d at low Ca. Very accurate measurements of P„~
and its derivatives with respect to V are made by super-
imposing a small-amplitude oscillatory flow on a larger
steady-state flow and measuring the response. Analo-
gous experiments have been shown to yield' precise re-
sults for the closely related ' ' system of a sliding
charge-density-wave (CDW) conductor.

The oscillatory Aow was generated via a plunger
driven at frequency m by an audio speaker, and coupled
to the Auid through a latex membrane. The steady-state
Aow was varied by raising a reservoir of the advancing
Auid. A long, narrow-bore tube (high hydraulic resis-
tance) inserted between the reservoir and the sample
guaranteed that the Aow rate was constant. Two Omega
pressure transducers were used to measure both the pres-
sure and velocity as described elsewhere. ' The ac out-
put of the transducers was amplified, and the harmonic
content measured with several PAR 124 lock-in
amplifiers. In this fashion, both the in-plane and out-of-
phase components of the pressure with respect to the ve-

locity were determined.
The experiments described below were performed in a

1-mm-diam 30-cm-long Pyrex tube with an interface be-
tween a mineral oil and a glycerol-methanol mixture.
Both fluids had viscosity p =25 cP and the interfacial
tension was &=15 dyn/cm. The more wetting glycerol
mixture was advanced, and we measured 6I, =65 and
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Ap =P(vd~) + 4
P"(Vd~) V ~+

A i/V, ,=P'(Vd, ) + —, P"'(v„)v,', +

Az/V„=, P"(Vd, )+ .

(2)

where primes are used to denote derivatives with respect

0„=45. This hysteresis indicates disorder on the tube.
A mineral-oil-filled tube of 0.5 mm diam in series with

the sample tube was used to monitor both the oscillatory
and steady-state components of the velocity. In all cases
the oscillatory component of the velocity was found to be
a pure sine wave at the drive frequency with no measur-
able harmonics.

The total pressure drop measured in the sample tube is

the sum of P,„.~ and P„;„the normal viscous dissipation
away from the interface. Our experiments were done at
low frequencies (ro«100 Hz) where P„;,is given by the
steady-state expression P„;,=8pLV/R, where V is the
mean velocity of the fluid, and L and R are the tube
length and radius. We verified that this linear depen-
dence on V held in the absence of an interface, and that
there were no measurable Fourier components of P at
harmonics of m. Thus all nonlinear eff'ects can be attri-
buted to the interface.

When a fluid displacement is imposed on the interface,
two types of motion of the meniscus can occur: (I ) bow-

ing of the interface with the contact line fixed, and (2)
displacement of the entire meniscus. The first type of
motion occurs in the region of contact-angle hysteresis
where the contact line is pinned. ' Both types of motion
occur when the contact line is depinned. The fraction of
each depends on both ro and the value of the steady-state
pressure relative to the depinning pressure P, =(—2y/
R)cos8, . Following Dimon, Kushnick, and Stokes, 'z we

defined e as the mean displacement of the interface due
to bowing. Then the imposed mean ac flow V,,(co)
=U,,+de/dt, where U,, is the flow due to contact-line
motion at fixed shape. Both e and U„aredirectly relat-
ed to 8d. Expanding for small ac variations, i.e., 8.„,and
Fourier transforming we find

V,, =8„(dVd, /d8) ( I —i ro/ro„),

where cp„=(d Vd, /d8)/(de/d8) and de/d8 =R/(1
+sin8d) . For ro & ro„the response is in phase with V,

„

and measurements of P,,~ directly reflect dissipation at
the moving contact line. At higher frequencies, interfa-
cial bowing leads to substantial out-of-phase com-
ponents. In our experiments, we find m, ~ 1 Hz when
Ca& 10

For measurements at co(&m„ the instantaneous pres-
sure drop approximately equals the steady-state pressure
P(V) at the instantaneous flow rate V. Treating the os-
cillatory flow as a small perturbation about the dc flow

and making a Taylor-series expansion yields expressions
for the Fourier amplitudes A„atthe harmonics neo of the
drive frequency:

(R/2y) (P,,~
—P, ) =cos8d —cos8, =8Ca ". (3)

In this dimensionless form, any trivial dependence of 8
and x is removed. The exponents relating Ca to P,',,~ and

P,",. ~ are x —1 and x —2, respectively. Thus the decrease
of both Ai and Az in Fig. I indicates x & 1. To make a
quantitative determination, the contribution to P'(V)
from P„;,was measured without an interface and sub-
tracted from A~/V, , The remainder was scaled by
R/2y and is plotted versus Ca in a log-log plot in Fig. 2.
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FIG. 1. Dependence of the in-phase components of A~/V„,
and —Aq/V. ', on Ca, for an ac flow at 0. 1 Hz with peak-to-
peak amplitude corresponding to Ca=2X10 '. For dc flows

larger than the ac flow, the in-phase components equal P' and
P"/4

to velocity. When Vd, » V„,only the first term on the
right-hand side of Eqs. (2) contributes to A„.Thus the
first and second derivatives of the dc P-V relation can be
determined by simultaneously measuring V„., and the
n=l and 2 components of the pressure response. At
small Vd„other terms become important and interpreta-
tion of the results is complicated. For Vd, & V.

„
the in-

terface is pinned for part of the cycle and there is a sub-
stantial out-of-phase component due to bowing. ' Note
that P„,only contributes to 2 ~.

Figure 1 presents typical results for A i/V, , and
—Az/V, , at 0. 1 Hz. Velocity is converted to Ca on the
abscissa to eliminate trivial dependences on p, y, etc.
The value of V„for these results corresponds to a peak-
to-peak variation in Ca of 2x10 . Note that the in-

phase response decreases when Ca is less than half this
value. At the same time the out-of-phase response rises
rapidly from zero. These changes reflect pinning of the
contact line and the resultant bowing. At higher Ca,
motion of the contact line dominates the displacement,
and variations in the plotted quantities reflect the first
two derivatives of P„.,~ with respect to V. For Ca greater
than 2X 10, A i/V„appears to flatten out and —Az/
V,, appears to go to zero. As discussed below, this may
reflect a crossover in the nature of the contact-line
motion.

Our main goal is determination of the exponent x re-
lating P„~—P, to Ca:
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FIG. 2. Scaling of the first derivative of cos&d with respect
to Ca. The solid line indicates a power-law fit. Two data sets

represent two ac amplitudes: circles, 2 x 10 '; triangles,
4x 10

For a little more than a decade the results fall on a
straight line with slope —0.60~0.05. This leads to a

value for x of 0.40~0.05 and 8=3.1 ~1. For com-

pleteness we have also verified that A2/V, , scales in a
consistent manner. Finally, these results are also con-

sistent with previous dc measurements where the error
bars are much larger. '

Most theoretical work has focused on the velocity
dependence of 8d on homogeneous surfaces. Using
asymptotic analysis, Cox'5 found a relationship between
Ca and Od measured a distance 8 from the contact line:

g(8d, k) =g(8p, l, ) +Ca[In(R/I ) +Q), where g is a simple

analytic function, 8p is the actual angle of contact at
lengths less than I, k is the viscosity ratio, and g is a
model-dependent constant. Recent simulations for sim-

ple fluids are consistent with this expression with

00 =8,. Since the derivative of g is finite for 8 & 0, these
results imply x =1 for a partially wetting fluid on a
homogeneous surface.

Several recent papers' ' have considered how disor-
der affects 8d. Although disorder leads to nonuniform
motion of the contact line, Jansons' has shown that
sufticiently far from the contact line the interface
translates uniformly. If D is the scale of the heterogenei-

ty, then uniform motion occurs at scales much greater
than D/Ca. Two approaches have been suggested for
calculating how Hd at these scales depends on the non-

uniform motion at smaller scales: Zhou and Sheng'
concentrate on the dissipation due to capillary waves ex-
cited on the moving interface, and Raphael and de
Gennes ' and Joanny and Robbins ' have independently
considered a model where velocity-dependent sampling
of the surface heterogeneity plays the dominant role.
The results from each model are briefly described below.

Zhou and Sheng assume that the contact line rapidly
jumps between (say) peaks on a rough surface. The dis-

sipation due to the induced deformation of the interface
is then calculated using bulk capillary-wave theory. For
typical experimental situations the capillary ~aves are

overdamped and their theory predicts x =
2 . Estimates

of 8 span the experimental range but recent work indi-

cates that 8 is velocity dependent. ' More work is need-
ed to establish when the rapid-jump approximation is
valid.

The alternative approach ' ' begins by assuming x =1
on a uniform surface and that heterogeneity only occurs
on scales larger than I. Then the local equation of
motion for each region of the contact line can be con-
structed from the wetting forces, the surface tension, and
the dissipation for a contact line moving at the local ve-

locity. One finds that the contact line moves at different
velocities over regions with difl'erent wetting properties.
The time-averaged wetting force is velocity dependent
and determines the value of x. To make the calculations
tractable artificial periodic heterogenity was considered,
yielding x= 3 at constant velocity. By analogy with

CDW systems, which show similar velocity-dependent
effects, " one expects a lower exponent for surfaces with

random heterogeneity.
In these latter calculations, 8d approaches the value

for a homogeneous surface with average wetting proper-
ties when icos8d —cos8, i ) icos8, cos8—, i Ou.r mea-
sured hysteresis corresponds to a range in cos8 of 0.3 and
the data in Fig. 2 do suggest a crossover to x =1 in this
region. More work on surfaces with difl'erent amounts of
contact-angle hysteresis will be important in determining
which of the theoretical treatments of roughness is
correct. They would also rule out alternative explana-
tions for x due to nonlinear effects on a uniform sub-
strate. Possible examples of such effects are variations in

surface tension along the interface due to varying surfac-
tant concentrations, or non-Newtonian behavior near the
contact line due to the high stress.

In conclusion, we have studied the dynamics of a mov-

ing fluid-fluid interface using a novel technique, i.e., by
measuring the harmonic content of the response of the
system to a small-amplitude oscillatory flow superim-
posed on a steady-state flow. This allows us to charac-
terize the nonlinear pressure-velocity relation of a mov-

ing contact line. The results are inconsistent with
current understanding of motion on a uniform substrate.
However, the measured exponent, x =0.40 ~ 0.05, is
near the values expected from simple calculations for
heterogeneous subtrates. More work is needed to estab-
lish the universality of this exponent and the underlying
mechanisms which determine it.
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