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Dynamics of the Interactions of Rotons with Quantized Vortices in Helium II
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We consider the theory of mutual friction in helium II which accounts for the coupling of the normal
and superfluid flows by means of quantized vortices. Numerical simulations of roton-vortex interactions
suggest a simple new expression which accounts for most mutual friction at low temperatures. By care-
fully separating that which can be known at the present time from that which cannot be known until the
structure of quantized vortices is understood, we are able to account for mutual friction in a semiempiri-
cal way at all temperatures and pressures.

PACS numbers: 67.40.Vs

The two-fluid theory of helium II envisions a mixture
of a normal, viscous fluid and a superfluid which can
move completely independently at sufficiently low veloci-
ties. At higher velocities, i.e., Reynolds numbers 10,
the flow of the two fluids becomes locked together by a
mechanism involving quantized vortices called mutual
friction. The basis for understanding mutual friction
was identified by Hall and Vinen in the 1950s as col-
lisions between rotons and quantized vortices and char-
acterized by macroscopic mutual friction parameters 8
and 8' which enter the two-fluid equations of motion.
Mutual friction is important to the theory of elementary
excitations in superfluid helium, to superfluid turbulence,
and to heat transfer in superconducting devices cooled by
helium II. Hall and Vinen defined microscopic parame-
ters D and D' describing the interaction of rotons with

quantized vortices which need to be understood from
theory. The connection between 8 and 8' and D and D'

is intricate and subject to significant sources of error. '
There have been many attempts to calculate 8 and 8'
from various theories. None have succeeded in a con-
vincing way. Using numerical simulations as a guide, we

have developed an analytical expression (8) for the mu-

tual friction caused by the long-range interactions of a
roton with the velocity field of a vortex. Together with

the scattering of rotons by the vortex core, described by
Hillel and Vinen, this expression allows us to calculate
values for 8 and 8' that are in substantial agreement
with experiment for T(1.8 K, with no adjustable pa-
rameters. Discussions and reviews of previous work are
contained in Refs. 1 and 3-5.

The first objective of our investigation was to simulate
roton-line collisions to gain insight into the interaction.
We consider rotons to be point excitations obeying the
dispersion curve for elementary excitations in helium II
shown in Fig. 1. Rotons with p &po have their group ve-

locity u=de/dp parallel to their momentum and are
called R+ rotons; those for p & po have their group ve-

locity antiparallel to their momentum and are called R
rotons.

The vortex line is considered to be rigid and aligned
along the z axis with a circulation x =(h/m)i, where m

is the mass of the helium atom. The velocity field of the
vortex is azimuthal in the x-y plane and is given by
v, ~ (tc/2ttr)p, where the unit vector p is in the azimu-
thal direction in the x-y plane and r is the radial distance
from the core. When the roton enters into the velocity
field of the vortex the p v, interaction modifies the ener-

gy from e(p) to e(p)+p v, as discussed in detail by
Rayfield and Reif. Trajectories are obtained by in-

tegrating Hamilton's equations of motion as described by
Roberts and Donnelly.

We illustrate in Fig. 2(a) the trajectories of a single
R+ roton of momentum 2. 1X 10 ' gcm/sec incident
upon a vortex line. This relatively slow roton (-72
m/sec) experiences minor deflections for positive impact
parameters, but truly major deflections for negative im-

pact parameters. These rotons make a transition from
one side on the roton minimum to the other with no
change in energy. These dramatic reversals of group ve-

locity do not necessarily result in a large momentum ex-
change because the momentum vector may be deflected
only a small amount. This type of "species change" may
also be found in an early paper by Goodman (see espe-
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FIG. 1. Dispersion curve for elementary excitations in heli-
um II. The minimum is described by an energy h, and a
momentum po. Rotons are excitations near this minimum.
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(a) cially his Fig. 1).
The corresponding momentum exchange parallel to

the initial trajectory is shown in Fig. 2(b). One can see
that while the maximum momentum exchange occurs for
close collisions, features such as the reversal of the group
velocity extend so far from the vortex line (-150 A in

this example) that they add up to a substantial net
momentum transfer to the line.

Using the coordinate system described above and as-
suming a macroscopic drift of rotons with mean velocity
in the +x direction, we can show by methods developed
by Rayfield and Rief that
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where the distribution function for the rotons at rest is

f(p) = [h '(e~' —1)] (2)

o is the cross section,

db &p/2p, (3)

8 is the polar angle, and Ap is the momentum transfer
parallel to the original trajectory.

The simulation results of Fig. 2(b) suggest that the in-

tegrand of o is very simple:
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~here b is the impact parameter of the roton, b„;, is the
critical impact parameter dividing scattered from unscat-
tered rotons, and p' is the momentum of a roton on the
opposite side of the roton minimum with the same ener-

gy as the original roton. The critical impact parameter
is simply the distance from the vortex where the p v, po-
tential reduces the roton's kinetic energy to h. The
roton's group velocity then reverses direction and it
backs out of the vortex potential. Therefore,
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FIG. 2. (a) Trajectories of rotons incident upon a vortex
line (indicated by a dot) with clockwise circulation. The
momentum of the rotons is p=2. 1x10 gcm/sec and the
impact parameter b is stepped in intervals of 20 A. The almost
total reversals of direction for negative impact parameters cor-
responds to the species change R + R . (b) Parallel
momentum exchange for rotons with orbits such as in (a).
This function can be approximated by the rectangular function
in Eq. (4), ignoring close collisions. (c) Transverse momentum
exchange from (a). Note that the total transverse momentum
exchange, the integral under this curve, very nearly vanishes.

a=a+ (p —po) '/2tu,

where p is the roton eff'ective mass, in which case

4 -~iiT
3n 2zp Pp~

4 kT h

(7)

where we define Di as the part of D that is due to
scattering from the velocity field of the vortex.

To find D t, we can perform the integration in (6) nu-

merically, or (at low temperatures) use the Landau par-
abolic approximation
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D2 2pnt'G&core ~

D' =p„ ir/2,

(9)

(10)

Equation (8) is a new result in the theory of mutual fric-
tion.

For close collisions ( ( 10 A) we cannot expect
reasonable physical results from the simulation for at
least three reasons. First, the vortex may deform in a
close collision and send waves along the core. Second,
there are localized roton states near the line which are
not taken into account in a single excitation model. Fi-
nally, the (still unknown) quantum-mechanical structure
of the vortex lines and the roton must be involved in

these collisions.
Hillel and Vinen have produced an ingenious account

of the consequences of close collisions. They assume ro-
ton interactions between the incoming roton and the lo-

calized rotons near the core will result in the absorption
of the roton. Taking into account this absorption and
subsequent (nonisotropic) reemission of rotons, they find
the corresponding microscopic friction parameters

The critical-region investigations of Pitaevskii ' and
Onuki'' show that the limit of D as T T~ is zero, the
corresponding limit for D' is p„x (see Hillel for a dis-
cussion). With this information we can construct a
semiempirical model for D and D' which is superior to
(6) and (10) at temperatures greater than 1.8 K, but
which adds terms motivated solely by forcing D and D'

to approach their critical values. Thus,

D=(D, +D,)(1 —e "')
D'= xp„[(1 —t)+20t e ' ],

(13)

(14)

where t=(T~ —T)/T&. At temperatures high enough to
require (13) and (14), the parabolic approximation (7)
will not work, and we must find the value of DI in (6)
numerically using the observed roton dispersion curve. '

Fortunately, our numerical investigations show that D
and D' are surprisingly independent of the temperature
dependence of the dispersion curve and it appears
sufficiently accurate to use the low-temperature values of
6, po, and 4 of Ref. 13 and the dispersion curve of Ref.
12. The results of this procedure are shown in Fig. 3.

where vo =42k T/rr4 is the average group velocity of ro-
tons and o„„is the core cross section which we take to
be the core diameter. Taking D =Di+D2 from (8) and
(9), D' from (10), and using the formulas of Barenghi,
Donnelly, and Vinen gives a reasonable account of 8
and 8' at low to moderate temperatures (i.e. , T & 1.8
K).

We can test our theory below 1 K by comparing with
the drag on vortex rings measured by Rayfield and Reif.
They determine a drag coefficient a which, after al-
lowance for drag by phonons and He, is interpreted in

terms of a roton-line cross section:

(a)
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and quote the surprisingly large result pro=9. 5 ~0.7
Vortex-ring drag formulas of Sec. 3 of Ref. 1 can be
shown to yield D=2a/x. Interpreting our result (8) in

the same way as (1 I) gives the contribution to the cross
section from distance collisions
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which yields oo=8.5 A at T=0.67 K. The contribution
from the core in Dq is about 2 A and raises cro to —10.5
A in substantial agreement with experiment. This result
clears up a long-standing puzzle.

The observed quantities 8 and 8' have been reported
only above 1.3 K. ' They depend on the frequency of
second sound used in their observation in a complicated
way and the means to get accurate values are tedious.
It would be better to have the microscopic parameters D
and D' available at all temperatures and pressures. Un-
fortunately, our single excitation model cannot be ex-
tended much above 1.8 K.
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FIG. 3. (a) Values of D and D' from the semiempirical
model. (b) Values of B and B' deduced from D and D' com-

pared to experimental values taken from Ref. 1.
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Data available today limit the calculation of 8 and 8'
at higher pressures. No reliable tabulation of viscosity
as a function of temperature and pressure exists. If,
however, we use the roton viscosity formula of Ref. 7
and the low-temperature core parameter of Ref. 1, we

can compute 8 and 8' at T= 1.4 K from P =0 to 24
bars. We find 8 is nearly independent of pressure, fal-
ling about 25% over the pressure range from a value of
—1.4 at P 0. The data of Mathieu, Marechal, and
Simon' are roughly constant at —1.5 over the same
range in pressure. This result is surprising since D and
D' are functions of p„which increases by a factor of 3
over this pressure range at T 1.4 K. '

This research gives, we believe, the basis for under-
standing the mutual friction coefficients D and D', and 8
and 8', at all temperatures and pressures. A number of
important challenges remain: (I) We need accurate
viscosity data under pressure; (II) we need to measure
vortex-ring drag under pressure and compare the data to
the predictions of (6) and (10); (III) 8 and 8' are poorly
known below 1.6 K and need to be measured with accu-
racy down to -0.8 K and as a function of pressure; and
(IV) a theoretical explanation of the correction terms in

(13) and (14) would be helpful, but probably very
difficult as these terms are necessary in the temperature
range above the limit of the single excitation model but

below the critical temperature region.
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