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Short-Wavelength Instability in a Linear Array of Vortices
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The temproal instabilities of a linear array of vortices are studied experimentally; a short-wavelength

instability is observed. The results are compared to a one-dimensional model of coupled nonlinear oscil-

lators, leading to excellent agreement.
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The transition to spatiotemporal chaos is a problem of
great current interest. Because of the large number of
possible routes leading to weak turbulence, many studies
are devoted to systems of low dimension. Spatiotemporal
complexity is found in one-dimensional models such as
those derived from Kuramoto-Shivashinsky' or Ginz-
burg-Landau equations. Recently, the concept of one-
dimensional pattern evolution to turbulence has been
tested experimentally.

The aim of this Letter is to report the investigation of
a new system —a linear array of vortices. We will show

that, from the dynamical point of view, it belongs to the
class of one-dimensional systems. We report here the
observation, prior to the onset of chaos, of a new short-
wavelength instability, which, to the best of our know-

ledge, has not been observed earlier in unidimensional
extended systems.

The experimental system is similar to that used in pre-
vious studies. The cell is an open rectangular con-
tainer, 350 mm long, 50 mm high, and 40 mm wide,
machined out of Plexiglas. The working fluid, which is a
normal solution of sulfuric acid, resides in a groove, 300
mm long, 20 mm wide, and 2 mm deep, machined in the
bottom plate of the cell. Throughout the experiment, the
thickness of the fluid layer is maintained at 2 mm, so
that its free surface is flat at rest. Just below the fluid

layer, a line of permanent magnets is formed; each indi-
vidual magnet is a samarium cobalt parallelepiped, of di-
mensions 5x8x 3 mm. They are put together to form a
line of alternating poles. The vertical component of the
resulting magnetic field, within the liquid layer, is a
periodic function —roughly sinusoidal —of the coordi-
nate along the lattice, with a zero mean value, and an
amplitude of 0.3 T. A steady electric current I is driven

longitudinally through the electrolye; it interacts with
the magnetic field to produce the flow.

For quantitative analysis, we use a shadowgraph tech-
nique, which is based on the fact that the free surface of
the liquid is deflected by the rotation of the vortices. We
thus form the image of the perturbed surface of the fluid

by using a system of two confocal lenses, characterized
by lateral magnifications ranging from, '& to &'& . This
method allows for visualizing the separatrices between
vortices as light lines. We further digitize the image and

track the position of such lines. In the time-dependent
regimes, the corresponding ratio of signal to noise is

about 40 dB.
At low currents, the basic state of flow is a linear ar-

ray of counterrotating vortices of homogeneous size. As
the electric current is increased above a first threshold
value, the vortices cease to have a uniform size along the
lattice axis: Half of them become larger at the expense
of the others which decrease. As I is increased further,
the small vortices disappear and we end up with a system
of stationary corotating vortices, with a size twice as
large as that in the basic state. We denote this state by
"state +."

The corresponding images of the free surface, obtained
by using the shadowgraph method, are shown in Fig. 1,
for diA'erent values of the length of the system. The
white lines correspond to the separatrices between each

(a)

(c)

FIG. 1. Shadowgraph pictures of the free surface of linear
arrays of vortices, for several values of the number of corotat-
ing vortices; all the pictures are obtained for 1-12 mA. (a)
Three corotating vortices; (b) five corotating vortices; (c) seven
corotating vortices.
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FIG. 2. Oscillation amplitudes of the optical mode along the

lattice, for various values of its length (N denotes the number

of separatrices). On the ordinate axis, the units are arbitrary.
The solid lines are calculated by using Eq. (l).
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pair of corotating vortices. In state +, the separatrices
are stationary. Above a well defined threshold Io (which
depends on the size of the system), state + becomes un-

stable and the positions of the separatrices undergo
monoperiodic oscillations. By investigating the charac-
teristics of the system close to the instability point, we

find that the bifurcation from state + to the time-
dependent state is a supercritical Hopf bifurcation. This
result holds for all the systems which have been studied,
i.e., including from two to ten corotating vortices. Con-
cerning the spatial structure of the oscillating mode, we

observe that it is in the form of an optical mode; i.e., the
separatrices oscillate out of phase with their neighbor.

ln the present experiment, the lattices are of finite
size. End effects induce a modulation of period N+ l for
the amplitude of the oscillation along the lattice (see Fig.
2). One can then define a dimensionless wave number
associated with the optical model by the following ex-
pression:

k =rr+2rr/(N+ 1 ),
where N is the number of separatrices in the lattice.

Following these lines, the marginal stability and the
dispersion curves of the system are obtained by plotting,
respectively, threshold values Io and frequency fo of the
optical mode as a function of wave number k. The two
curves are shown in Fig. 3.

A secondary instability of the system appears upon the
increase of the control parameter I above a new thresh-
old. Figure 4 represents the state of Aow after the onset
of this instability, for various sizes of the lattice. The
amplitudes of oscillation cease to be smoothly modulated
in space, and a shorter-scale structure is visible. The
corresponding perturbation tends to increase the ampli-
tude of oscillation of half of the separatrices at the ex-

FIG. 3. (a) Marginal stability diagram; (b) dispersion rela-

tion. The solid lines are determined by using Eq. (l).

N=2

1.2- /
/

/
0.4 p

0f 'I

2 3

M=5

gi
/

0.4- i
I

0 (
1 2 3 4 5 6

Il

'l. 2—
/

/
0.4 -ii

0(
2 3 4

I l

4 6
0

Nc8

FIG. 4. Oscillation amplitudes of the optical mode per-
turbed by the short-wavelength mode, for various sizes of the
lattice. The dashed lines correspond to typical amplitude en-
velopes found by using Eq. (l).

pense of their nearest neighbors. This secondary insta-
bility is observed for any value of the length of the sys-

tem. The nature of this bifurcation is clearly supercriti-
cal for lattices of moderate sizes, i.e., up to five corotat-
ing vortices. For larger sizes, some irreversibility is ob-
served, and it becomes more difficult to characterize the
transition.

Upon further increase of the control parameter, a new

state appears, whose nature depends on the length of the
system. For moderately large lattices, the new state is a
quasiperiodic regime, with two frequencies, while for sys-
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in which Ao and to are the amplitude and wave number
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FIG. 5. Phase diagrams of the system. (a) Experiment; (b)
Eq. (1), with the coefficients determined experimentally;

ti =(I I„)/I„whereI, = 12—.1 mA. The abbreviations are ST,
stationary; SWI, short-wavelength instability; QP, quasiperiod-
ic state.

tems of larger sizes, the new state is a chaotic regime.
These transitions are summarized in the phase diagram
of Fig. 5(a).

The physical origin of the first mode of oscillation ob-
served above Ip is presumably a shear instability which

germinates in localized regions between the corotating
vortices. The corresponding bifurcation is direct. It is

then tempting to model the system as a chain of coupled
nonlinear Hopf oscillators. Restricting ourselves to
nearest-neighbor coupling, using reflectional symmetry
and translational time invariance, one can write down, to
the lowest order, the following model for our system:

BW„/i)t= p(1+ico)W„—(1+ic2)W„~W„~

+ (el+ice)(W, —i+ W, yi)

(c3+ic4)W (IW —,I'+ IW +il'), (1)

in which W„is the complex amplitude of the nth oscilla-

tor, t is dimensionless time, and p, e, cp, c~, c2, c3, and c4
are real coefficients. Models similar to Eq. (1), but re-

stricted to linear couplings, have been studied by

Kuramoto. '

At the transition point, the most unstable mode is ei-

ther an acoustical mode (for a) 0), where all the oscilla-
tors are in phase, or an optical mode (for a & 0), where

each oscillator is out of phase with respect to its nearest

neighbors. Since the temporal phase of such modes is

defined only through an arbitrary constant, one can look

for the instability which breaks the corresponding
translation invariance. The calculation is formally simi-

lar to that of the Benjamin-Feir instability, and the re-

sults shown herein have been obtained for the case of
infinite chains. The basic state is assumed to be the opti-
cal mode and the perturbed state reads

of the basic state, and ap and 6' are the amplitude and
wave number of the perturbation. Performing linear sta-
bility analysis, we find that the stability of the system
essentially depends on a quantity A(b) whose expression
1s

h(B) =1+cie2+2cos8(c3+cic4) . (3)

A mode of wavelength 8 is unstable if A(b) is negative;
otherwise it is stable. Long-wavelength instabilities ap-

pear just above the primary instability point p =2m when

6(0) is negative. In this case, the resulting instability is

similar to the Benjamin-Feir instability. A new situation

appears when A(0) is positive and h(tr) negative. In this
case, the system is unstable against short wavelengths
b=a at a finite distance from the primary instability
point. The perturbed state is monoperiodic in time and
its spatial structure is such that the amplitudes and

phases of oscillation cease to be uniform along the lat-
tice: Half of them are larger than their immediate
neighbor.

We now proceed to the measurement of the coef-
ficients of Eq. (1), using a strategy somewhat similar to
that of a recent study. '' The separatrices are labeled
from 1 to N along the lattice and the order parameter
W„is understood as related to the temporal behavior of
the nth separatrix. By investigating the transient behav-

ior of the system close to Io, for N =1 and 2, we find the
following values for the coefficients of Eq. (1): co= 2. 1,
c~ = —4.3, c2 = —0.2, c3 = —0.08, c4 = —1.2,
= —0.05, and iu =(I I, )/I„whe—re I, = 12.1 mA. The
corresponding marginal stability and dispersion curves
are plotted in Fig. 3.

Using these values, one can further determine the na-

ture of the secondary instability of the system, in the
ideal case where the line of vortices is infinite, by com-

puting h(h). We find that the system is stable to long

wavelengths, and unstable against short-wavelength per-
turbations B=tr. The corresponding instability has pre-
cisely the form found in the experiment.

These theoretical results are in agreement with a nu-

merical study of Eq. (1), where the lattice is supposed to
have perfectly reflecting ends; integration is performed

by using the fourth-order Runge-Kutta method. The
phase diagram calculated with the preceding values of
the coefficients is shown in Fig. 5(b). There is a large
domain where the optical mode is stable. This domain is

limited from below by the marginal stability curve and

from above by the short-wavelength instability discussed

previously. In the upper region of the diagram, the sys-
tem becomes either quasiperiodic (for lattices of
moderate sizes) or chaotic (for large systems). Such re-
sults are in remarkable agreement with the experiment:
The phase diagrams of Figs. 5(a) and 5(b) show striking
similarities.

We therefore find a good agreement between the mod-

el and the experiment; this shows, at least, that our sys-
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tern, from a dynamical point of view, lives in a one-
dimensional space. We have revealed the existence of a
small-scale instability, which breaks the same symmetry
as the Benjamin-Feir instability but is short wavelength
(twice the lattice mesh) and appears at a finite distance
from the primary instability point. This instability is re-
lated to the discrete nature of our system, and to the ex-
istence of nonlinear interactions between the oscillators
[numerical computation of (I ) shows that when c3 c4
=0, secondary instabilities appear at small wave num-

ber]. It would be interesting to compare such results
with recent predictions concerning the secondary insta-
bilities of periodic patterns. '

We are indebted to V. Croquette, D. Bensimon, and
K. Sawada for illuminating discussions related to this ex-
periment.
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