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Rydberg States and Ionization Potential of Calcium Monofluoride
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61 vibronic states of CaF in the region 41930-45905 cm ' are observed by optical-optical double res-
onance, rovibronically assigned, and shown to belong to 37 Rydberg electronic states. These states are
organized into six core-penetrating (/ < 2), mixed-/ Rydberg series, from which we obtain an improved
value of the CaF ionization potential, 4700520 cm ~'. All previously observed low Rydberg and
valence states of CaF fit smoothly into these six Rydberg series, which form the complete set of | <2
series. Using this information, absolute quantum defects have been determined and the series are as-
signed nominally (i.e., dominant / character) as d (A, I, and Z), p (IT and £), and s (%).

PACS numbers: 33.80.Rv, 33.10.Jz, 33.20.Lg, 33.40.Ta

This Letter reports new electronic spectra of CaF in
which the complete manifold of core-penetrating Ryd-
berg states with orbital angular momentum /<2 has
been identified, for values of the effective principal quan-
tum number n* between 4 and 10. The work is sig-
nificant because CaF is far more ionic than any other di-
atomic molecule for which similar data exist. The fact
that the CaF ™ ion core is doubly closed shell (Ca?t s,
F~ 'S) means that the spectrum and its interpretation
will be greatly simplified. The large dipole moment of
the CaF* ion core causes significant mixing of states
with / differing by 1, particularly at low / values where
the Rydberg electron can penetrate deeply into the core.
The completeness of the data, including al/ of the core-
penetrating Rydberg series, is unique and will permit a
very thorough analysis of the interaction between the
Rydberg electron and the CaF * ion at short range. The
observed Rydberg series are found to extrapolate
smoothly back to include a// the lower-energy electronic
states known from previous work. The lowest-energy
electronic states (valence states) are well represented by
a ligand-field model where a nonbonding electron cen-
tered on Ca’" is perturbed by a negative point charge
(the ligand).! The structure of the inner loops of core-
penetrating Rydberg orbitals will resemble the structure
of their “valence”-state precursor orbitals and will also
be centered on Ca?*.2 CaF is an example of a new type
of Rydberg molecule, one whose stable electronic states
are all Rydberg states, in particular including the ground
state which is neither repulsive nor weakly bound.?® CaF,
as one of the simplest alkaline-earth monohalides, is the
prototype for a number of interesting alkaline-earth-
containing systems,4 where it will be instructive to exam-
ine quantitatively the variations of their electronic prop-
erties.

There have been several recent studies of high-/ Ryd-
berg states in diatomic molecules.>® For example, the
Rydberg spectrum of NO has been studied extensively
and several n/ Rydberg series have been identified.®
The Rydberg states of NO, like CaF, are built on a '=*
ion core, but for NO the dipole moment of the ion core is
so small that no core-dipole-induced /-mixing effects
have been detected. Using a long-range force model, the

quadrupole moment and the polarizability of the NO™*
ion core have been deduced from the term energies of the
nonpenetrating nf series.” Using a similar approach, but
including the long-range effects of a core dipole, we hope
eventually to observe and deperturb the core-nonpen-
etrating (/ > 2) Rydberg states of CaF in order to deter-
mine the dipole and higher multiple moments and the
polarizability of the CaF* ion core. It may also prove
possible to extract similar information from core-
penetrating s, p, and d series by incorporating a ligand-
field model for core-penetration effects into a long-range
force model.

Calcium monofluoride is produced in a Broida-type
oven modified for high-temperature operation. Crystal-
line CaF, and a small amount of boron (powder or
chips) are placed in a graphite crucible, which is resis-
tively heated in a tungsten basket. CaF molecules are
entrained in flowing argon carrier gas at a typical pres-
sure of about 200 mTorr. Rydberg states are detected
using a pulsed optical-optical double-resonance (OODR)
scheme. In the first step (pump), CaF is excited from
the ground state X 2Tt to the A’y state, using a
pulse-amplified ring dye laser tuned to a specific A-X ro-
tational line. In the second step (probe), a frequency-
doubled pulsed dye laser excites the molecules to the
various Rydberg levels. The spectrum is recorded by
detecting uv fluorescence while the probe laser frequency
is scanned. The A4 3, v=0, J"=3.5 (e parity) level is
the intermediate state in all of the survey scans.

Most of the observed Rydberg states are near the
Hund’s-case “b” coupling limit, with only the lowest-
energy °T1 and 2A states having resolvable spin-orbit
splittings. When the spin-orbit constant is less than 1
cm ~!, IT and %A Rydberg states typically appear in the
OODR spectrum as a four-line pattern, (O-, P-, Q-, R-
form branches) consisting of one line from each of the
six rotational branches, but where the PQ and P lines
and the 2R and Q lines are unresolved. Some represen-
tative spectra are shown in Fig. 1. For 2Z* states, a
two-line pattern (P- and R-form branches) is observed
via J"+3.5 because the spin-rotation splitting is not
resolved at such low J. It is possible to distinguish ’A
states from I states by pumping the J"=1.5 (N"=2)
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FIG. 1. Representative OODR spectra showing near case-
“b” coupling. (a) The 5d T, v=2 (n*=4.38, 42648

cm ™ ')-A4 My, 0" =0, J'=0, J"=3.5 lines. Here the spin-
orbit splitting is resolved so that P, Q, and R lines terminating
on both upper-state N=J+ 3 and N=J — § spin components
are seen. (b) The 7d A, v=0 (n* =6.14, 44090 cm ~')-
A M3, v"”"=0, J"=3.5 lines. Here the spin-orbit splitting is
not resolved and a four-line pattern is observed. The scans are
linear in frequency and the lowest- and highest-frequency lines
are labeled by their wave numbers.

level of the A IT3; state. For ’IT Rydberg states, transi-
tions to the N'=1, 2, and 3 levels are observed while, for
2A Rydberg states, transitions are possible only to N'=2
and 3 levels.

As a first approximation, the Rydberg electron can be
treated as if it moves in the field of a monopole at long
range. The energies are then given by the familiar ex-
pression

E,=Ip—R/(n*)?, (1)
where Ip is the adiabatic ionization potential, R is the
Rydberg constant, n* =n—yu, and y is the quantum de-
fect. The quantum defect parametrizes the complicated
interactions that the Rydberg electron experiences inside
the core and varies slowly with energy within a given n/
series. Contributions to the long-range potential, mainly
from the dipole moment, but also from the higher-order
core multiple moments, will be evident in the quantum
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FIG. 2. n* plot for all observed Rydberg states of CaF. All
six series (s, p, d Z, p, d T1, and d A) are plotted together for
the same vibrational quantum number. Note that the six series
derived from the core-penetrating / < 2 orbitals form a series
of supercomplexes rather than isolated / complexes. The n/ la-
bels are the nominal (i.e., dominant) / character of each
member of the lowest-energy observed v =0 supercomplex
(4.8 <n* <5.7). This is an example of the most extensive /
mixing ever observed among all of the core-penetrating series.
Although less complete, the v =1 and 2 series are almost per-
fect replicas of the v =0 series.

defect as well. The quantum defect is usually positive
and its magnitude decreases rapidly with increasing / be-
cause the /(/+1)/r? centrifugal barrier prevents the
Rydberg electron from penetrating into the core. If the
states are represented as a function of n*, where

n*=[R/Up—E,)1", (2)

and the ionization potential is chosen correctly, n*
values of consecutive members of a Rydberg series will
differ by approximately 1 because of the nearly constant
quantum defect. We present n* plots for the observed
v=0, 1, and 2 levels in Fig. 2. The replicated patterns il-
lustrated by Fig. 2 demonstrate the correctness of our as-
signments and the absence of any hint of isolated s, p, or
d complexes. For v =0, six series are shown which con-
verge to an ionization potential of 47005 c¢cm ~'=+20
cm ~!'. There are one A, two Il, and three X series.
These are the six series expected for an /-mixed super-
complex. Portions of similar series are shown converg-
ing to the v=1 (4768520 cm ~') and v=2 (48365
+20 cm ™) levels of the ion; thus, w,(CaFt X's%)
=680+20 cm . If these values of the v=0, 1, and 2
ionization potentials are varied by #20 cm ~', the states
can no longer be fitted into series. To our knowledge, the
best previous determination of the CaF ionization poten-
tial is 44800+800 cm ' from the unpublished
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electron-bombardment measurement of the CaF™* ap-
pearance potential by Hildenbrand.'® The largest devia-
tion from smooth n* plots occurs for the v =0 IT state at
n* =7.313 which falls below where it would be expected
by comparison with adjacent members of the series at
n*=6.353 and 8.343. This large level-shift perturbation
is undoubtedly related to the absence of the n* =6.35,
v=1 TII state that is expected to occur at about the same
energy as the n*=7.313, v=0 II state. Such Avr=1,
Al'=0, AL =0 perturbations provide a useful measure of
the internuclear-distance dependence of the quantum-
defect function pp(r). !

Ligand-field calculations have shown that the valence
states of CaF can be represented as linear combinations
of free Ca*-ion nl states."'>'3 In particular, in the CaF
A 1 state, the single occupied orbital outside the CaF *
closed-shell core consists of 69% 4p and 24% 3d atomic
Ca™ character.! Therefore, the Al= =1 atomic selec-
tion rule predicts strong electronic dipole transitions
from the CaF A state to s and d Rydberg series, accom-
panied by ~2.9 times weaker transitions to p and f
series. An initial assignment of the Rydberg states to n
and / quantum numbers has been accomplished by
extrapolating the quantum defects (modulo 1) of the ob-
served Rydberg series to the previously assigned low
Rydberg and valence states (see Fig. 3). This immedi-
ately determines the absolute integer value of the princi-
pal quantum number » and yields absolute quantum de-
fects for all members of each series. As expected, Ryd-
berg series of nominal (i.e., dominant) s, p, and d char-
acter are observed. However, unexpectedly we have
detected no trace of an f series. The s, p, and d core-
penetrating series are, like their valence-state precursors,
of strongly /-mixed character.

One A Rydberg series (u=0.87) has been observed,
but the two lowest members of this series have not yet
been located. The series is assigned as d A because its
quantum defect is too large to belong to the nonpenetrat-
ing f series. Predictions of the location of the lowest ly-
ing 3d A state suggest that it is also associated with this
series. The 3d A state is predicted by Rice, Martin, and
Field! to be at about 24950 cm ~', corresponding to
n* of 2.23 (u=0.77). Another prediction, made by
Torring, Ernst, and Kindler,'? places the 3d A state at
about 17690 cm ~' (1 =1.065). It is puzzling that the f
A series does not appear in our OODR spectra. Perhaps
the core dipole induces / mixing at long range in the non-
penetrating / = 3 series. The extremely small quantum
defects of these /=3 series ensure near perfect /A,
(I + 1)1 degeneracies (which makes irrelevant the ap-
proximate / ' dependence of the dipole-core /-mixing
matrix element). The expected A 21— nf(AILEZY)
transitions might be unobservable because the 3d — nf
oscillator strength is diluted into many / = 3 series.

Both of the IT series extrapolate to previously observed
low Rydberg and valence states. One of the IT series ex-
trapolates to the E' and A states with only a small devia-

tion in the quantum defect. We have assigned this as a p
I series (u=2.02) based on the ligand-field calcula-
tions.! The other IT series extrapolates to the F and C
states, but with a much larger decrease in the quantum
defect for the C state. This series is assigned as d I1
(1 =0.65). The anomalously small quantum defect of
the C state is probably due to the reverse polarization of
the nominally 34 IT orbital towards the ligand (due to
M-centered, ligand-induced mixing of 3d with 4p). !
Preliminary indications of the spin-orbit constants in the
IT series support these extrapolations as well as the nomi-
nal / assignments. The spin-orbit constants of the
(n+1)p I states (n* =4.98, 5.98, etc.) are about twice
as large as those of the slightly higher-lying nd IT states
(n* =5.35, 6.35, etc.). This ~2:1 ratio is also observed
in the A and C states where the spin-orbit constants are
71 and 29 cm "', respectively. !

Two of the X series extrapolate to low Rydberg and
valence states with only small deviations in the quantum
defect, while the third extrapolates to the reverse-
polarized C' state with a large decrease in the quantum
defect. One X series extrapolates to the X state and is
assigned as nominally s £(u =2.45). This assignment is
supported by preliminary fits of the spin-rotation con-
stants in this series which are on the order of 1073
cm ~!, similar to that of the X state. The spin-rotation
splittings within a CaF Rydberg X series should remain
almost independent of n*. The spin-rotation splitting is
a second-order effect involving the product of the spin-
orbit operator, which scales as (n*) 73, and the BJ-L
operator which is independent of n*. Since the energy
denominator between interacting ¥ and IT states (at a
particular J value) also scales as (n*) ™3 the spin-
rotation splitting should be independent of n*. The
series which extrapolates to the B state (42%, 3d, 38%
4p)' is assigned as nominally d £ (£ =1.10) and the
remaining I series (which extrapolates to the C' state) is
assigned as nominally p £ (z=1.83). The spin-rotation
constants in these series are also consistent with those of
their valence precursor states. The large quantum-defect
deviation for the lowest member of the p X series may
also be due to a reverse-polarization effect similar to that
observed for the lowest member of the 4 IT series. As
inexplicable as the absence of an f A series, there is no
trace of either an f IT or an f X series.

We are currently recording higher-J spectra in order
to measure the A-doubling constants of the observed IT
states and more accurate spin-rotation constants of near-
by X states. Deperturbation will provide information on
the extent of / mixing as well as improved molecular con-
stants. A multichannel quantum-defect analysis'!
should make it possible to separate the contributions to
the / mixing and quantum defects due to short-range in-
teractions (e.g., ligand field) from those produced by
long-range interactions>’ (including the ion-core dipole
moment). Measuring the dipole moment of the ion core
will be simplified if nonpenetrating f and higher / states
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FIG. 3. Absolute quantum defects plotted vs integer n values. Previously observed valence and Rydberg states are labeled on seg-

(b).

can be observed, because the / mixing would then be due
solely to the long-range interaction of the Rydberg elec-
tron with the multipolar ion core.” It is hoped that
OODR spectra via the C [T state will reveal the elusive
nf A, I1, and X states owing to the dominant 3d character
of the C state.
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