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A Bell inequality is derived for a state of n spin- —, particles which superposes two macroscopically dis-

tinct states. Quantum mechanics violates this inequality by an amount that grows exponentially with n
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Greenberger, Horne, and Zeilinger' (GHZ) have re-
cently described a state ~4) of four spin- —,

' particles with

the following remarkable property:
A group of spin-correlation experiments performed on

four widely separated particles in the GHZ state reveals
certain strong spin correlations to which the reasoning of
Einstein, Podolsky, and Rosen (EPR) can be directly
applied. The EPR argument forces one to conclude that
a new type of spin-correlation experiment in the GHZ
state must always yield a certain outcome. One can,
however, demonstrate by a simple quantum-mechanical
calculation that in fact this outcome can never occur in

the GHZ state.
This refutation of EPR is strikingly more direct than

the one Bell's theorem provides for Bohm's version of
EPR. In Bell's example the EPR argument gives a lower
bound to the probability of a certain outcome to a new

experiment (33 —,
' % in one simple case ), which, howev-

er, exceeds the probability quantum mechanics actually
gives for that outcome (25%). In the GHZ experiment
the corresponding "lower bound" is 100% and the result
required by quantum mechanics, 0%. The refutation is

not only stronger —it is no longer statistical and can be
accomplished in a single run.

This all versus nothing demolition of EPR follows

directly from a simple quantum-mechanical calculation
of the data produced in the new experiment. The same
point cannot, however, be inferred directly from the ac-
tual data collected in some nonideal laboratory realiza-
tion of the GHZ experiment, because, for example, the
less than perfect efficiency of real detectors weakens the
observed spin correlations from the strong ideal form on

which the EPR argument relies. Faced with this prob-
lem in the Bohm-EPR experiment, Clauser et al. de-
rived a correlation inequality whose validity is necessary
for the observed correlations to be consistent with a very
general probabilistic locality condition. The quantum
theoretic predictions for the EPR correlations can exceed
the bound imposed by this inequality by a factor as large
as J2, allowing significant room for the softening effect
of the imperfections in real experimental attempts to
demonstrate quantum nonlocality.

Because the violation of the EPR locality condition is
so much stronger in the GHZ state than in the two-
particle spin-singlet state of the Bohm-EPR experiment,

one might expect that correlation inequalities could be
found for the GHZ experiment that were more strongly
violated by the results predicted by the quantum theory.
In this paper I show that this is indeed the case, deriving
simple correlation inequalities for n-spin versions of the
GHZ experiment. The data predicted by the quantum
theory exceed these bounds by a factor that grows ex-
ponentially with n.

Because these experiments require the use of n in-

dependent detectors, whose joint efficiency necessarily
declines exponentially in n, this does not establish that
the n-particle GHZ states (which are also more and
more difficult to prepare with increasing n) are neces-
sarily a promising arena in which to eliminate such
loopholes as remain in the direct experimental demon-
stration' of quantum nonlocality. They do, however,
provide a striking theoretical demonstration of the
surprising fact that there is no limit to the amount by
which the correlations in a quantum-mechanically entan-
gled state can exceed the limits imposed by a Bell in-

equality.
An n-particle state with these strange properties is

simply

)4) =(I/J2)()t t t&+i(J f )&),

where t or J in the jth position refers to the component
of the jth particle along its own z axis. If one is thinking
in terms of a real experiment, then it makes sense to re-
gard the n particles as flying apart from some common
source, taking the z axis for each particle to be along its
direction of motion, and its x and y axes along any two
orthogonal directions perpendicular to its line of flight.
(The argument also works, however, if each particle is

provided with its own arbitrarily oriented Cartesian
triad. )

Everything of interest to us about the state ~@) follows
from the easily confirmed fact that it is an eigenstate of
the operator

with eigenvalue 2"
If one takes the diagonal matrix element of 2 in the
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state i@) and expands the products, one finds

&ciao'ay2ay3a4' ' a ie)

+(cia' . a'a' a"ie)+
—&e(a . a a'. a Iv)—I 7 8 nl-

f Z Z l~

+ o ~ ~ (3)

nonlocality without invoking the parameters A, , and that
explains why both approaches always give the same
mathematical conditions on the observed correlation
functions. l

If a representation (5) exists, then the mean of a prod-
uct of x or y components of the spins of all the particles
will be given by

E„,. . .„dXp(X)E„',(A, ) E„"„(X),
where each line of (3) contains all distinct permutations
of the subscripts that give distinct products.

The total number of terms in (3) is

where

E'(X) =p'(t X) —p'(j k) (7)

n
2n —I

j odd
(4)

Since each term must lie between —1 and 1, for the com-
bination of correlation functions in (3) to add up to
2" ', each term must have its extremal value +1 or —1,
and i4) must therefore be an eigenstate of the operators
appearing in every term. This observation leads directly
to the EPR argument and its immediate refutation, as
discussed elsewhere. We do not pursue this line of
thought here, because we are interested in the case where
the measurements are imperfect, and the observed corre-
lation functions E„,. . .

„„

fail to attain the extreme values
(Cia„', ag„i4) ~ 1 that they assume in the ideal
case.

We therefore inquire whether the measured distribu-
tion functions P„,. . . „(mi m„) (with each pJ either
x or y and each m being t or i) that describe the out-
comes of the 2" different kinds of experiments that
must be performed on n particles in the state i4) to yield
the correlation functions appearing in (3) can all be rep-
resented in the conditionally independent form

P„,. . . „„(ml m„)

In particular, the linear combination of such experimen-
tally measured correlation functions corresponding to the
linear combination of correlation functions whose the-
oretical value is given by the expansion (3) of (2) is evi-
dently just

n n

F=„dlp(k) —. g (E„+~E~)—Q (E„—'E ) . (8)
j 1 j 1

We have noted that according to the quantum theory,
for n particles in the state i@),F is given by

(9)

There is, however, a much more stringent bound on the
size of any quantity that can be expressed in the form
(8). Each of the 2n quantities EJ,E~i appearing in the
integrand of (8) is constrained by (7) to lie between —1

and 1. Since the integrand of (8) is linear in each E„
(holding the other 2n —

1 of them fixed), it assumes its
extremal values at the boundaries of each of their
domains. It is therefore everywhere bounded by the
largest of the extremal values it assumes at the points
where each of the E„andE~ is independently taken to
be +1 or —1. Since (8) can also be written as

dX p(X) [p„',(m i, Z) p„"(m„,) ) ] .

(5)
F Im dip(X, ) g (EJ+iE')

j~t
(IO)

This is the most general form that accounts for the
correlations by attributing them to some unspecified set
of parameters l common to all n particles, with distribu-
tion p(k), subject only to the requirement that the out-
come at any one detector for given A, not depend on the
choice of component (x or y) to be measured at any of
the others. The representation (5) is generally regarded
as the hallmark of a local theory that accounts for the
correlations entirely in terms of information jointly avail-
able to the particles when they left their common source.
It is the form tested by Bell's inequality and all of its
generalizations. [It is also mathematically equivalent to
the condition that there exists a single joint distribution
of 2n variables, P,~, . . . „~,that returns all the mea-
sured distributions as marginals. It is this mathematical
fact that underlies efforts (such as Stapp's ) to derive

at the extremal points F is just the imaginary part of an
average of a product of complex numbers each of which
has magnitude J2 and phase ~z/4 or ~3m/4. When n

is even the product can lie along the imaginary axis and
attain a maximum value of 2";when n is odd the prod-
uct must be at 45' to the imaginary axis and its imagi-
nary part can only attain the maximum value 2 "
Thus if F can be represented in the form (8) then

F~ 2", n even,

F~ 2(n —~)!2 n odd.

%hen n exceeds 2 either bound is less than the quantum
theoretic value (9) which exceeds it by the exponentially
large factor of 2 " (for n even) or 2~" ' ~ (for n

odd).
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Note that the large n-GHZ state (I) is a superposition
of two states that diA'er in all n degrees of freedom:
Only the mean values of n-particle operators can reveal
interference eA'ects. It thus combines two of the most
peculiar features of the quantum theory. It displays an
extreme form of quantum nonlocality as a direct mani-
festation of interference eff'ects between macroscopically
distinct states.

This work was supported in part by the National Sci-
ence Foundation, Grant No. DMR 8920979.

'Daniel M. Greenberger, Michael A. Horne, and Anton
Zeilinger, in Bell's Theorem, Quantum Theory and Concep

tions of the Universe, edited by M. Kafatos (Kluwer Academ-
ic, Dordrecht, 1989), p. 69.

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

3J. S. Bell, Physics (N.Y.) I, 195 (1965).
4D. Bohm, Quantum Theory (Prentice-Hall, New York,

1951).
sN. David Mermin, Am. J. Phys. 49, 940 (1981); see also

Sec. II of Booj ums All The Way Through (Cambridge Univ.
Press, New York, 1990).

sJ. F. Clauser et a/ , Ph.ys. Rev. Lett. 26, 880 (1969).
7Alain Aspect, Jean Dalibard, and Gerard Roger, Phys. Rev.

Lett. 49, 1804 (1982).
sN. David Mermin, Phys. Today 43 (6), 9 (1990); Am. J.

Phys. 5S, 731 (1990).
See, for example, Henry Stapp, Am. J. Phys. 53, 306

(1985).

1840


