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Angular Band Structure of a Vortex Line in a Type-II Superconductor
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The electronic structure of a vortex line in a type-II superconductor is calculated in the low-
magnetic-field limit in the framework of the Bogoliubov-de Gennes theory. It is found that breaking the
rotational invariance of a vortex line by means of either an anisotropic crystal potential or the presence
of neighboring vortices induces an angular band structure in the low-energy part of the quasiparticle

spec&urn. The associated quasiparticle amplitudes become distorted and exhibit a characteristic "star"
shape whose orientation is energy dependent. This explains recent scanning-tunneling-microscopy exper-
iments by Hess, Robinson, and Waszczak [Phys. Rev. Lett. 64, 2711 (1990)l on NbSe2.

PACS numbers: 74.50.+r, 61.16.Di, 74.60.—w

Recent scanning-tunneling-microscopy (STM) experi-
ments on NbSez by Hess and co-workers' have given a
new insight into the detailed structure of vortex lines in

type-II superconductors. Besides showing the enhance-
ment in the zero-bias tunneling conductance caused by
the presence of bound states in the vortex core, these ex-
periments have also provided images of vortex lines in

which the contours of equal tunneling conductance have
a characteristic star shape. Most strikingly, the orienta-
tion of these star-shaped patterns relative to the triangu-
lar flux lattice was found to depend on the tunneling bias
voltage. At zero bias, the measured tunneling conduc-
tance decays rapidly in the direction of the nearest-
neighboring vortex lines, and more slowly in a direction
30' away from the nearest neighbors; i.e., the arms of
the star pattern point towards the interstitial sites. At a
bias voltage of 0.5 mv, which corresponds to approxi-
mately half of the zero-field superconducting gap ho, the
situation is reversed and the tunneling conductance de-
cays more slowly in the direction of the nearest-
neighboring vortex lines; i.e., the stars are rotated by 30'
(see Fig. I, left-hand side). In this paper we show that
the observed star-shaped pattern and its rotation can be
explained in terms of the solutions of the Bogoliubov-de
Gennes equations using a simplified two-band model.

Early descriptions of an isolated vortex line based on
the microscopic theory of Gor'kov and Bogoliubov and
de Gennes have been given by Caroli, de Gennes, and
Matricon ' and Bardeen et al. These authors were
able to solve the Bogoliubov-de Gennes equations ap-
proximately in various limits. More recently, these equa-
tions were solved numerically for bound states alone
and for bound and scattering states, which allowed ex-
planation of the tunneling spectra observed at the vortex
core by Hess and co-workers. Fully self-consistent solu-
tions for the isolated isotropic vortex have been obtained
subsequently which provide the detailed structure of the

gap function at low temperature as well as the structure
of the tunneling conductance spectrum at various dis-
tances away from a vortex line.

The electronic structure of a superconductor is de-

scribed in terms of spinors

which satisfy the Bogoliubov-de Gennes equation

~ o [p-a —A(r)j +U(r)
2@1 C

+ [h(r) rr++ h*(r) o —] 'y„(r)=E„y„(r),

FIG. 1. Tunneling conductance images at zero bias (top
row) and at finite bias (bottom row). The left-hand column
shows the experimental results of Ref. I. Calculated images
are sho~n on the right-hand column. The nearest-neighbor
direction of the Abrikosov flux lattice is the horizontal direc-
tion.
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where a ~ = —,
' (cr„~icr, , ), cr„a, and cr, are Pauli ma-

trices, U(r) is the one-particle crystal potential, A(r) is
the gap function, and A(r) is the vector potential.

In the case of an isolated vortex line, and in the ab-
sence of any anisotropic crystal potential, the system is
invariant under all rotations above the z axis, and angu-
lar momentum can be used as a quantum number. Us-
ing cylindrical coordinates and choosing the gauge in

whict) h(r) =Id(r)le ', the quasiparticle amplitudes
can be v ritten as

(0) (
(„)ei(P—)/2)8

ik, =

(„)i(p+)/2)e
&'npk„

(3)

[6A p+p hA]I
2mc

+ '
2[bA A(0)]e:,

mc
(5)

where I is the identity matrix in spin space. The crystal
potential SU(r) in H) and the last term in Eq. (5) both
appear in front of a o operator, which implies that they
are not pair breaking to first order. On the other hand,
the first term in Eq. (5) is pair breaking to first order
and should be dominant. However, especially at low
magnetic field, the crystal potential may dominate, so
that all contributions must be kept in our analysis.

Since we are mainly interested in the changes occur-
ring in the low-energy part of the spectrum —i.e., E (Ao—we expand the Hamiltonian in the bound states of the
unperturbed problem. The sixfold symmetry of the per-
turbation simplifies the problem considerably. Only
bound states whose angular momentum differ by 6p =6
are coupled by the perturbation. If we consider only the
subspace spanned by the twelve lowest bound states, i.e. ,

where the angular momentum p is half an odd integer.
We assume a k--independent Fermi surface, which is ap-
prOpriate in the case Of NbSe2.

First, we consider perturbations to a cylindrically sym-
metric vortex caused by the presence of an anisotropic
crystal potential described by H) =SU(r)cr.-. The isotro-
pic component of the crystal potential can be accommo-
dated by using an effective mass in the isotropic kinetic-
energy operator. The additional term we consider here
describes the angular-dependent part, i.e., the anisotropy
of the effective mass. In the case of NbSe2 this term has
hexagonal symmetry. Its precise value is not known, and
is affected by the presence of a hexagonal charge-density
wave at low temperature.

Second, we consider the presence of neighboring vor-
tices, which can be accounted for by modifying the vec-
tor potential in the vicinity of the vortex line

A(r) =A' '(r)+SA(r, B) .

The lowest-order magnetic perturbation to the Bogo-
liubov-de Gennes Hamiltonian is

the bound states p =
2 to '2', which is reasonable at low

energy, the Hamiltonian reduces to a block-diagonal ma-
trix. Each block is a 2x 2 matrix of the form

&u IH lu+ 6&

&s +6IH lu& &~+6IH 1~+6&

E 1 1/2 + Ec (E13/2 .(o) (o) (7)

The tunneling conductance can be calculated in the
simplest approximation using the expression

~ 2 [lu, (r) I
'f'(E; —eV)

I

+Iv;(r)l f'(E;+ev)],
where f'(E) is the derivative of the Fermi distribution,
and i denotes all quantum numbers. Contrary to the iso-
lated vortex case, the conductance has now lost its cylin-
drical symmetry. For example, in the lower band, we
have

lu~ (r)l =a„lu„(r)l+p„lu&~6(r)I
—2a„P„I u„(r)I Iu„y6(r)I cos6B,

where a„and p„are the components of the eigenvectors
of H„. The last term in Eq. (9) introduces an angular
(sixfold) modulation in the tunneling conductance. The
STM image of a vortex line therefore exhibits a star
shape. The orientation of this star-shaped conductance
pattern changes with the coefficients a„and p„which in

turn depend on the value of the tunneling bias voltage.
At small bias, the tunneling process occurs in the lower
band whose eigenfunctions have an angular "bonding"
character, whereas at a bias larger than E„the tunnel-
ing process involves the upper band which has "anti-
bonding" character. The sixfold angular modulation of
the conductance is therefore reversed as the bias in-
creases from zero to above E„.i.e., the star pattern ro-
tates by 30 .

The absolute orientation of the conductance patterns
is determined by the relative magnitude of the perturba-
tions H1 and H2 in a given direction. The sign of H] is a
priori unknown but can in principle be obtained from de-

1821

E„S'„
(o) ~E„+6

Note that due to the absence of rotational symmetry, the
quantum number p is now limited to values 2

~ p & '2'

and only serves to label the irreducible representations of
the sixfold rotation group C6. It is not an eigenvalue of
the angular momentum operator anymore. The eigen-
values of H„form two bands, labeled + and —,which
are separated by an energy gap of order

I W)/2I+ I W) )/2I

in this subspace spanned by the twelve lowest bound
states. This gap might be reduced if higher-energy
bound states are included in the basis set. The crossover
from the lower to the upper bound occurs at an energy
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tailed band-structure calculations. In deriving the sign

of H2, we assume that the vector potential of the vortex
lattice is the sum of the vector potentials of isolated vor-

tices (which is appropriate in the low-field limit). We
then find that the perturbation can be approximated by

0.4

0.3

hA(r, 8) = 8A„(r)sin68

b'Ae' (r)+He (r)cos60 (lo)

where 0 =0 is the nearest-neighbor direction of the
Abrikosov lattice. The corresponding magnetic field has
maxima in the nearest-neighbor directions. Retaining
only the magnetic perturbation H2, and solving the 2x2
secular problem numerically, we find that the resulting
zero-bias star has arms extending towards the nearest-
neighboring vortices, i.e., in the directions where the
magnetic field is stronger. This is consistent with the
picture of the lowest bound states extending preferential-
ly into the regions where the magnetic field is strongest,
i.e., where the gap is more strongly suppressed. This is,
however, not the orientation of the star observed experi-
mentally at low field. We therefore conclude that, in the
low-field limit, the crystal potential Hi is dominant, so
that the total perturbation Hi+H2 is repulsive in the
nearest-neighbor direction, and attractive in the intersti-
tial direction. In other words, the orientation of the stars
in NbSe2 seems to be determined by the underlying crys-
tal potential and not by the Abrikosov flux lattice. The
relative magnitude of the matrix elements of Hi and H2
depends on p. At large p and not too small fields, the in-

creasing magnetic perturbation may cause the matrix
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FIG. 2. Low-energy part of the quasiparticle spectrum of a
vortex line in the cylindrically symmetric case (open circles)
and in the presence of a sixfold-symmetric perturbation (solid
circles).

element W„to change sign. This would result in an ad-
ditional distortion of the star-shaped pattern at large dis-

tances from the core, where the contributions to the con-
ductance from states with large p become important.
Details will be discussed in a forthcoming paper.

We have calculated the conductance as a function of
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FIG. 3. Tunneling diA'erential conductance calculated at zero bias (top right) and at a finite bias of V=AD/5 (bottom right) in the
direction of the nearest-neighboring flux line (solid lines) and in the interstitial direction (dashed lines). The experimental results

from Ref. 1 are shown in the left panels.
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distance from the vortex core, assuming a value of
~W„~/&o=0.05, independent of p. This value is com-

parable to the energy spacing between the lowest quasi-
particle bound states of the isolated vortex. The result-

ing modified spectrum is shown in Fig. 2, together with

the unperturbed spectrum. The quasiparticle amplitudes
used in the calculation of the conductance were obtained
from a self-consistent calculation of the electronic struc-
ture of an isolated vortex. 9 The conductance profiles cal-
culated in the direction of the nearest-neighboring vortex
and in the interstitial direction are shown in Fig. 3 at
both zero bias and a bias of hp/5, which corresponds to
the bottom of the lower and of the upper bands, respec-
tively (see Fig. 2). The experimental curves of Ref. I

are also shown in Fig. 3 for comparison. Our simple
two-band model correctly predicts the reversal of the an-

isotropy of the tunneling conductance between low and

high bias voltages, as can be seen by comparing the solid
and dashed lines. The enhanced zero-bias conductance
at the vortex core, also shown in Fig. 3, is exaggerated in

the calculated conductance, as already discussed in Refs.
7 and 8. Finally, we used the calculated conductance
r)I(r, O, V)/r)V to produce a gray-scale image, similar to
the experimental image of Ref. 1. It is compared to ex-
periment in Fig. I (right-hand column), illustrating
dramatically the efl'ects of our simple model.

In conclusion, we have shown that in the presence of a
hexagonal crystal field and of the neighboring vortices of
the Abrikosov lattice, the STM tunneling conductance
exhibits a sixfold-symmetric star shape in the vicinity of
a flux line. By means of a simple two-band model, we

have also shown that the orientation of this star-shaped

pattern depends on the tunneling bias voltage, and that it
rotates by 30 at a critical value of the bias voltage.
Comparison of the absolute star orientation with experi-
ment leads to the conclusion that the underlying crystal
potential, and not the Abrikosov flux lattice, is the main
source for the observed anisotropy.

We would like to thank H. Hess for many fruitful dis-
cussions, aad for communicating his results to us prior to
publication. One of us (F.G.) acknowledges financial
support from the Swiss National Science Foundation.

'H. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev.
Lett. 64, 2711 (1990); H. Hess, R. B. Robinson, R. C. Dynes,
J. M. Valles, Jr. , and J. V. Waszczak, Phys. Rev. Lett. 62, 214
(1989);J. Vac. Sci. Technol. A 8, 450 (1990).

2L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov.
Phys. JETP 9, 1364 (1959)].

3See, e.g. , P. G. de Gennes, Superconductivity of Metals and
Alloys (Addison-Wesley, Reading, MA, 1989).

4C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9,
307 (1964).

5C. Caroli and J. Matricon, Phys. Kondens. Mater. 3, 380
(1965); C. Caroli, Ann. Inst. Henri Poincare, Sect. A 4, 159
(1966).

J. Bardeen, R. Kiimmel, A. E. Jacobs, and L. Tewordt,
Phys. Rev. 187, 556 (1969).

J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna,
Phys. Rev. Lett. 62, 3089 (1989).

sF. Gygi and M. Schliiter, Phys. Rev. B 41, 822 (1990).
9F. Gygi and M. Schliiter (to be published).




