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Broken Symmetries and Localization Lengths in Anderson Insulators: Theory and Experiment
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Extending a random-matrix theory developed earlier, we show that breaking a basic symmetry in an
Anderson insulator (e.g. , time-reversal symmetry or spin-rotation symmetry) generically yields a multi-

plication of the localization length g by universal factors. Numerical calculations and magnetoconduc-
tance measurements in the Mott variable-range-hopping regime confirm that the removal of time-
reversal symmetry by a magnetic field yields g 2g in the absence of spin-orbit scattering, and g g/2

in the presence of spin-orbit coupling.
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The classification of ensembles in quantum mechanics,
first introduced by Dyson, ' leads us to distinguish be-
tween systems which are not invariant under time-
reversal symmetry (unitary case, e.g. , when a sufficient

magnetic field is applied) and systems having this invari-

ance, for which two cases occur: the orthogonal case (in-

variant under spin rotation) and the symplectic case
where this symmetry is broken, e.g. , by sufficient spin-

orbit scattering. This classification is familiar in trans-

port theory, but until now it is mainly for the weak-

localization corrections that we have realized its impor-

tance. Magnetoconductance measurements have shown

how weak localization and weak antilocalization are re-

moved by a magnetic field. These results describe the
eA'ects of transitions between the different symmetry
cases for disordered metals only, where the conductance

g is measured in units of ez/h is large.
With few exceptions, these symmetry considerations

have been ignored in the strongly localized regime (g
«1). However, a positive magnetoconductance, which

is reminiscent of the suppression of weak localization by
a magnetic field in disordered metals without spin-orbit

scattering, has been observed in a number of studies" of
Fermi glasses in the Mott hopping regime.

The nonperturbative description of a random-matrix
theory developed earlier allows us to understand in a

unified manner the eA'ects of symmetry breaking in con-

ductors and insulators. The matrix L considered in this

theory is related to the transfer matrix M of a A-channel
elastic-scattering system of length L by X=[(M M)
+(M M) ' —21]/4. Its N real positive degenerate ei-

genvalues 4.,j are related to g by a two-probe Landauer
formula: g =2+, =1 [1/(I +X, )1. The distribution of g
is then given in terms of the joint probability distribution

P({k,j), which is obtained in two steps. First, we define

for L three possible matrix spaces from symmetry con-

siderations. We can visualize the matrix L as a point
which diAuses in those spaces when, for instance, the rni-

croscopic locations of the scatterers are changed. When
the system is time-reversal invariant (e.g. , orthogonal

case), the point is constrained to diA'use in a subspace
embedded in a larger space which can be explored only
when this symmetry is removed (unitary case). This
yields three possible infinitesimal volume elements dL
and associated invariant measures ptt(dX). In eigen-
value-eigenvector coordinates, ' one obtains ptt(dx)
cx p, ) b lX, Xbl ~, w—here P takes the values of 1, 2, and
4 characterizing the orthogonal, unitary, and symplectic
cases, respectively. In the second step, we define a densi-

ty on the X space which depends on the macroscopic
physical parameters. The global model' assumes for
this matrix density the most random one (maximum-
entropy criterion) given an eigenvalue density pt (X).
After integration over the eigenvectors, which are ran-
domized in their available space, one finds P (b, j )
—=exp( —PH), where

)V 1V

H([l.j) = —g Inl&. &bl+ g v(—~ ) (1)
a(b c=l

and V(k) =fo dk'pt (A. ')Inly' —Xl. Note the analogy to
a Coulomb gas of N charged particles at an effective
temperature P

' which depends on the symmetries of
the system. The eA'ective Hamiltonian (1) has been test-
ed by independent numerical calculations5 ' on micro-
scopic Anderson models. Moreover, if pt (X) is the solu-
tion of a certain integro-diA'erential equation, this
P(b.,j) satisfies the diA'usion equation implied by the
multiplicative composition law of M and a certain local
model' of maximum information entropy given the elas-
tic mean free path I. This local model yields quantitative
agreement'' with perturbative results in quasi-1D sys-
tems. Thus, taking the density implied by the local mod-
el restricts us to quasi-1D systems, and our knowledge of
pL(k) for higher dimensions is limited for the moment
to numerical studies. Defining 2X, —

1 = cosh (v, )
—:cosh(2L/g, ), Oseledec's theorem states that each in-

verse localization length (, ' self-averages' to a given
Lyapunov exponent as I ~. This implies that each v

grows roughly linearly with L, leading eventually to
strong localization, ~here 1&& vl && v2&& . && v/v and
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H(jv, j) = —g lnicosh(v, ) —cosh(vb)i
a&b

+ g ——ln[2sinh(v, )]+ v, ,
1

c=1 p 2L
(2)

where 3 =Nl/2 if one takes for a(v) the uniform quasi-
1D density. One of the assumptions underlying this re-
sult is that a symmetry-breaking perturbation alters only
the statistics of the eigenvectors of X without signifi-

cantly changing the eigenvalue density. In general, in

random-matrix theory the eigenvectors are assumed to
be fully randomized for the difTerent symmetry cases.
Thus, symmetry breaking changes only the value of P,
and hence the p-dependent term in H, coming from the
Jacobian of the change of variables. We underline that
the presence of this p-dependent repulsion from the ori-
gin in (2) is a very important and quite general result.
When time-reversal symmetry is removed by a magnetic
field, the 8 independence of a(v) seems physically
reasonable only when the magnetic length L8 is large
compared to l. For instance, g is not changed in the lo-

cal approach by 8 for a size L = I «Lq, and the result-
ing p-dependent difl'usion equation for P(h, ,]) gives a
p-independent equation for a(v) in the large-N limit.
Thus the constant 2 in (2), which can be calculated once
cr(v) is given, does not depend on the symmetry-
breaking perturbation in the local model. In higher
fields (quantized Hall regime), the density of states and
similarly a.(v) are highly structured functions of 8 and
our theory does not apply.

Expanding (2) in the strongly localized regime where
1« v] « . . . « v,y, one finds that the ath level v, feels
a potential —(a —1)v, —(1/p) v, + (2/2L) v,', giving
equilibrium lattice positions v, = (a —1+ 1/P)L/2 This.
result was derived when p =1 in Ref. 7. Setting a =1 we

g ix exp( —vi) ~ exp[ —(2L/g)]. The important result
that the Lyapunov exponents have an essentially uniform
density'' arises from the multiplicative character of M
and seems generic in that it is found in many other phys-
ical contexts, e.g. , dynamical systems. ' It has been
shown analytically for the local model that the v vari-
able is characterized by a uniform density a(v) =go/2
for 0 ( v ( 2L/I. Here go =Nl/L is the classical Ohmic
conductance. Quasi-I D systems are characterized by
this density over the whole spectrum, but numerical stud-
ies' indicate very clearly that a(v) also remains uni-

form for the main part of the spectrum for 2D strips or
3D bars in the large-transverse-length limit, as well as in

strongly disordered insulating squares.
It is therefore more natural to consider the [v, I as the

location of the charges, which simply spread themselves
out more or less uniformly over an interval increasing
linearly with L. It is then straightforward to show that
the confining potential for the [v,] is quadratic close to
the origin: U(v) =(A/2L) v . The eA'ective "Hamil-
tonian" for these variables thus takes the form

obtain

(3)

where g(P =1)=Nl if we assume the uniform quasi-1D
density.

Relation (3) agrees with the results ' of a one-
dimensional supermatrix t7 model and was also derived
in a study" of weakly coupled one-dimensional chains
where predominant motion of carriers along the chains
was assumed. Contrary to the p-dependent repulsion
from the origin which is quite general, the presence of
the quadratic potential in (2) depends on the additional
assumption of a uniform v density, only proved for quasi-
1D systems. If 2D or 3D localization does not signi-
ficantly change the uniform v density close to the origin,
as indicated by numerical studies for the main part of
the spectrum, relation (3) is not limited solely to quasi-
1D systems, but applies quite generally in higher dimen-
sions. Since a mobility edge is shifted' by 8, a larger
effect on g is expected in its vicinity, and the correspond-
ing potential felt here by v] cannot be quadratic. But we
point out that this shift of the mobility edge, as the
weak-localization corrections in the metallic regime,
must also be a consequence of the p-dependent term in

(2), combined with the appropriate confining potential.
A recent work' reporting a positive magnetoconduc-
tance for all strengths of spin-orbit scattering apparently
contradicts our result. This disagreement can be due to
the directed-path formalism used which neglects the "re-
turning loops" within the localization domain, and leads
us to make precise the range of 8 in which our results
and their conclusions are valid. ' It seems reasonable
indeed that 8*('(8*)=go should be the natural cri-
terion for characterizing the field 8* required to break
time-reversal symmetry in our study. On the contrary,
the conclusion of the MIT group could be correct at
weaker fields where the flux quantum po is not applied
through the localization domain, but only through a
larger domain of the order of the Mott hopping length
fM.

We have calculated the localization lengths of disor-
dered microscopic models with an applied magnetic field
in order to test (3). A Hofstadter model' with diagonal
disorder (rectangular distribution of width W) was con-
sidered on a strip at the band center with periodic
boundary conditions. When we increase 8, we induce a
transition from the orthogonal case to the unitary one,
and we expect a doubling of the localization length.
When II' is small, the variation of ( as a function of 8 is

highly structured and dominated by the commensurabili-
ty of the flux per lattice cell and the flux quantum &0.

This yields for the spectrum of the Hamiltonian a com-
plicated band structure (Hofstadter butterfly, Landau
bands, gap opening effects, etc. ) and a similarly complex
behavior for a(v) Since we h. ave assumed that a.(v) is

8 independent, we do not find the simple doubling of (
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for weak disorder. On the contrary, for large disorder,
such magnetic structure is suppressed and the field in-

dependence of o(v) is a good approximation. Under
these conditions we observe the predicted doubling of g
(Ftg. I).

We have also been able to observe these universal fac-
tors experimentally in magnetotransport measurements.
In the Mott hopping regime, the activated conductivity
cr, (T) varies as a function of the temperature T as
exp[ —(Tp/T) ], where the slope To ~ 1/n (EF)(,
n(EF) being the density of states at the Fermi level EF.
To observe the transition from the orthogonal (P =1) to
unitary case (P=2), and the associated doubling of g,
we have measured the hopping conductivity of a GaAs
sample ' Si doped at —10'6 cm in a temperature
range between 20 mK and 4.2 K. Neglecting the depen-
dence of n(EF) on 8, related to our assumption of a 8-
independent cr(v), we have a simple prediction for the
behavior of the slope To~ [universal factor ( —,

' ) ~"]. The
inset of Fig. 2(a) shows indeed the expected decrease of
Tg" as a function of the applied field and a saturation
above 8 =0.2 T, although at a value 30% below that ex-
pected. The saturated behavior holds up to B=2 T
above which there is a huge increase attributable to the
shrinkage of the orbital wave functions. The second
experiment [Fig. 2(b)] has been performed on an amor-
phous Y,-Si~-, alloy (x=0.3) in order to illustrate
the transition from the sympletic (P=4) to unitary case
(P =2). Metallic compounds of this series exhibit weak
antilocalization which confirms the presence of strong
spin-orbit scattering. In contrast with the experiment on

GaAs, here we expect and observe a halving of g. To~
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increases as a function of 8 and saturates to within 10%
of the expected value for 8*)3 T. Below 100 mK we

observe in the Y -Si] — sample of size as large as 1 cm
a dependence of o, (T) on the measurement current
below 10 nA, and reproducible fluctuations of the mag-
netoconductance at T= 20 mK.

We emphasize here that these samples are three di-
mensional, indicating the relevance of our theory outside
purely quasi-1D systems. It would be of interest in fu-
ture work to observe a transition P =1 P =4 by the in-

troduction of spin-orbit scattering impurities, increasing

g by a factor of 4 in the absence of a magnetic field. 8*
= 3X 10 T for the numerical calculations presented in

Fig. 1, and using for g very crude estimates, 8*=0.002
T for the GaAs sample and 8*= 3 T for the Y,-Si~ —,
alloy. We note an excellent agreement with our theory
for the second sample where rM =3(. The agreement
for the GaAs sample is not very good. This can be relat-
ed to the weak value of To indicating that we are too
close for comfort to the mobility edge (formula omit-
ting numerical factors gives rM =(). However, mea-
surements were performed deeper in the localized regime
on Inz03 „ films (no spin-orbit scattering) and were in
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FIG. 1. Localization length ( vs B in units of fiux quanta
per lattice cell for a strip of width 20 and site disorder width
8'=5. Inset: Power-law dependence of g at low field. The ex-
ponent ( —,

' here) appears to vary with 8'.

FIG. 2. Logarithim of the resistivity as a function of T
Inset: Variation of the slopes T0 as a function of the applied
field B The arrow indicates the expe.cted saturation value. (a)
Si-doped GaAs sample. The saturation observed below 35 mK
is due to heating of the electron gas. (b) A Y,-Si~ —,alloy.
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agreement with a doubling of g.
Before concluding, we would like to underline the deep

relation between our general result [Eq. (3)] and the
weak-localization corrections in the metallic regime.
The symmetry-breaking perturbation (magnetic field or
spin-orbit scattering) is assumed to modify the available
matrix space which can be explored by L, without
changing significantly a(v). We find that the v levels

are subject to a P-dependent repulsion from the origin
and to a quadratic confining potential. Then we perform
an expansion valid deep in the localized regime when

I « vl « « v~. As a consequence, when P is

changed there is a uniform translation of the level equi-
librium positions of the order of their uniform spacing.
This modifies the decay length g, =A/(a —I+ I/P) of
the ath channel. Deep in the metallic regime, using a
simplified picture due to Imry, g measures the number

N, tr of open transmission channels for which g, ))L. It
is easy to see that the change of the decay lengths de-
rived above in the localized regime will change N, ff by
an amount of order I in the metallic regime. The dou-

bling or halving of g is therefore the counterpart in the
localized regime of the suppression of weak localization
or antilocalization in the metallic regime.

We note that changes of g can also be probed by
measuring the dielectric susceptibility e which is propor-
tional to g . The dependence of e and related optical
properties on an applied magnetic field is therefore a
question which deserves to be reexamined.
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sions that we gratefully acknowledge. We also thank Y.
Imry and S. Hikami for very interesting comments and
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work.
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