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Universal Scaling of the Stress Field at the Vicinity of a Wedge Crack in
Two Dimensions and Oscillatory Self-Similar Corrections to Scaling

Robin C. Ball and Raphael Blumenfeld

Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, England
(Received 8 May 1990)

We study the divergence of the stress field near the tip of a wedge crack of head angle between = and
27. A new universal family of solutions is found, where the dominant singularity is characteristic of a
pure tension on the external boundaries. Further from the tip the first correction is a power-law charac-
teristic of a pure shear on those boundaries. When the head angle is in a certain range, higher-order
modifications to the field are found to be periodic in the logarithm of the distance from the tip. Inside
this range oscillatory solutions appear as corrections to the power-law behavior. The relevance of these
solutions to sidebranching and to self-similar pattern formation of cracks is discussed.

PACS numbers: 62.20.Mk, 46.30.Nz, 64.60.Ak

The mechanics and dynamics of stable crack propaga-
tion have been under study for a very long time. Recent
developments in the study of pattern formation, on the
one hand, and in industrial applications, on the other, led
to an increase in the efforts invested in these problems.
It is well established experimentally!-> that in ductile
materials, under physically important boundary condi-
tions, there often exists an extended regime of stable
crack growth which intervenes between the initiation of a
crack and its final instability. There also occur in nature
processes of cracking without reaching the final catas-
trophic regime, such as stress corrosion cracking, the
cracking of particle arrays,® and even of a muddy
landscape upon drying. Simple lattice models of such
quasistatic crack propagation, i.e., governed by a quasi-
static elastic stress field, have recently been studied in
two dimensions (2D) by computer simulation.”® In
these models the cracks are free to tip split and side-
branch and the resulting crack patterns have been inter-
preted as being spatially self-similar.

We present what we believe to be the first analytic re-
sults that can lead to formation of such self-similar qua-
sistatic crack growth. We relate to these simulations in
assuming that the propagation of each crack branch is
controlled uniquely (and in an idealized way) by the con-
centration of the stress field at its tip. However, our re-
sults are derived for a continuum 2D isotropic medium,
rather than on a lattice.

We demonstrate the instability of the planar “crack,”
which bears striking resemblance to the equivalent result
in diffusion-limited aggregation (DLA).® As a result, we
are led to consider a conical (or wedge) approximation
to highly ramified growth and can make tentative predic-
tions concerning its selected apex angle (for statistical
isotropic growth). We find complex exponents for the
corrections to scaling in the stress concentration around
a wedge model of a crack envelope, indicating that the
corrections are oscillatory in the logarithm of distance
from the tip. This may provide an explicit mechanism
for the selection of the geometrical approximate periodi-
city which must develop if the crack morphology is to

evolve into a self-similar form.

For isotropic medium our results are universal in that
Poisson’s ratio is an irrelevant parameter.'® This univer-
sality of crack propagation problems in two dimensions,
which was seen in simulations,’ may be understood by
representing the stress tensor as oxx =09,,®, o,, =0, P,
and oy, = — 95, P, where the scalar function ® is known
as the Airy stress function (ASF). For an isotropic
medium (of arbitrary elastic constants) ® obeys the
biharmonic equation V*®=0. Taking the surface of a
growing crack to bear no applied force, it may be shown
that V& is a constant along the crack surface. Since only
second-order derivatives in @ enter the stress, we are at
liberty to choose that the crack surface has the particular
value V& =0, and then further that ®=0, reducing the
boundary conditions to ® =9,® =0.

At the wedge boundary there exists in principle an ar-
bitrary relation between the local advance velocity, or
breakage rate, v and the stress at the surface. However,
in 2D at an unloaded boundary, only the normal stress in
the tangential direction can be nonzero, and so we may
take v =f(V2®). The cases where f(x)~|x|" will be of
particular interest.

We begin by noting the instability of a planar front
propagating into the medium: This might represent ei-
ther a front of stress corrosion, or a planar envelope of
many microscopic crack tips. The unperturbed solution
consists of a flat boundary along, say, y =0 with an ASF
in y >0, ®(x,y) =o¢y?/2, leading to steady advance of
the front upwards with v =f(op). We now consider the
boundary perturbed to

y=Y(x) =§ Yiex 1)

with Y =0 at =0 and the other Y} small. To first or-
der in Y the appropriate solution of the ASF is

(I)(x,y)=;-aoyz—oozk:kacxp[ikx—|k|y] , ()

from which we can compute the advance rate along the
interface. To first order in Y, we find that their growth
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relative to the advance of the mean interface is given by

dYk = dlng(cr)
a¥e 20 k| Vi, whcren,g—[ Jino ]G_oo. A3)

This exponential growth of surface corrugations differs
from diffusion-limited growth controlled by a Laplace
field, only by the factor of 2 in (3). It is well known that
in the latter problem and with a sharp spatial cutoff on
the allowed modes of growth (for example, an underlying
particle size or lattice spacing), the growth front ramifies
to form a highly branched, self-similar fractal struc-
ture.!! We thus entertain the possibility that, as simple
lattice-based computer simulations have suggested,”®!!
the same applies in our present problem.

For a self-similar structure to develop we anticipate
power-law singularities in the stress concentration at the
leading crack tips. In the presence of competing side-
branches the conventional single straight-line crack is
not a good model from which to calculate this stress con-
centration. We study instead a wedge envelope on the
grounds that (i) the stressless interior is a reasonable
representation of highly cracked material; (ii) this is the
simplest scale-invariant shape with a tip feature; and
(iii) it gives an expected power-law singularity in the
stress concentration with exponent related to a geometric
feature—in this case, the wedge angle.

Consider a crack embedded in an otherwise homo-
geneous and isotropic medium, as depicted in Fig. 1.
This crack is assumed to have the shape of a wedge
whose head angle is 0 <2(x—a) <. Throughout our
analysis we assume that the crack is static or, at most,
propagating adiabatically, such that at each instant the
stress field around it can be considered at equilibrium.
This assumption excludes from our consideration brittle
fractures whose typical propagation time is shorter than
the time it takes the field to relax to equilibrium. As-
suming that the ASF can be decomposed over powers of
r, the radius from the tip, it is straightforward to find

FIG. 1. A crack whose envelope is modeled by a wedge. At
y— T o0, a combination of extension and shear are applied to
the boundaries.

solutions to the biharmonic equation of the form

Deven =2 [pmcos(m +1)0+g, cos(m—1)61r™ !, (4)
m

which are even functions of ®, with analogous odd solu-
tions having the cosine term replaced by a sine term.
The allowed values of m are in general complex, and to-
gether with the ratio of the coefficients p,,/q. these are
selected by the wedge boundary conditions, ® =3, =0
for 6= * a, leading to

(sin2a)/2a * (sin2ma)/2ma =0 )

for the even (+) and odd (—) solutions, respectively.
The odd version of (5) coincides with the one obtained
for a similar problem with load applied to an elastic
wedge.'? However, unlike in that case, we will see below
that it is the even version that yields the dominant singu-
larity near the tip, while the solution to the odd equation
only modifies this behavior further away. In the follow-
ing we call moq and Mmeyen the smallest solutions for m
for the odd and even versions of (5), respectively.

Since the first term on the left-hand side of (5) is real,
then the imaginary part of the second should vanish,
yielding a relation between E=Re(2ma) and 7
=Im(2ma). This relation is realized on three families of
lines in the &-n plane: (i) the “primary branch” n=0;
(ii) the “secondary branch” where tanhn/n=tan&/f;
(iii) £=0, 0. The value of sin(2ma)/2ma on these
lines is, respectively, (i) sin&/€, (i) coshn(&)sin&/éE,
where n(£) obeys the above relation along the secondary
branch, and (iii) sinhn/n. Case (ii) leads to no solu-
tions. To have a physical solution to (5) we require that
the displacement field is single valued; this leads to the
restriction Re(m) =&/2a > 0.

Near the tip it is the strongest allowed singularity [i.e.,
the smallest Re(m) >0 that solves (5)], which dom-
inates the field’s behavior. The strongest values of the
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FIG. 2. The lowest even- (dashed line) and odd- (solid line)
order solutions for m in Eq. (5), plotted against 2a. The dash-
dotted line represents the frequency v of the lowest-order oscil-
latory solution, as a function of 2a.
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odd and even values, myq and meyen, are real and are
shown in Fig. 2. Except at the end points (2a =r,27)
Meven < Modd, implying that the tension at the far boun-
daries is more important than the shear to the stress near
the wedge tip, 6~r"" "', For 2a < 2ag== 1.437, mogq
=1 indicating that the odd contribution is nonsingular.
We next demonstrate a possible application of the
above results, which are also of direct engineering

o(r,0) =R il la,+ (r/R)?*b,)cosn0+ Rlaog+ (r/ R)?bolIn(r/R) ,

significance, to the stability of a crack pattern under
growth, with respect to competition amongst its major
branches. In an earlier paper'® one of us gave an argu-
ment for the stability of a diffusion-limited growth of
N equivalent major arms (each of which could be highly
ramified) with respect to spontaneous modulation of the
arm length from R to R+6RcosS6. We now extend
that argument to the present problem. Starting from the
ASF for the unmodulated growth,

(6)

and assuming that near each tip ®(R+p)~p'*™ we find that the modified ASF satisfies

D (R+5RcosSO0+p) =d(R+p)[1+(S—1)(1 +Meyen)cosSOSR/R] .

In a model where the velocity of the tip advance obeys
v~ao", 7% this then gives SR/R increasing with growth
for n(S —1)(1+meyen) > 1. Identifying S=N/2 as the
highest sustainable mode of modulation, then the maxi-

mal stable number of arms obeys

N*2=1+1/n(01+m), (8)

which, since + <m =<1, can be bounded by 2+1/n
< N*=<2+4/3n. Noninteger N* are probably best in-
terpreted in terms of 2n/N* being the minimal stable
angle between (the direction of growth of) neighboring
major arms.

This argument can now be complemented by relating
N* to the tip angle 2(x—a) to yield, from (8), the
selected value of a* (and hence of Meven). A crude es-
timation can be obtained by assuming that adjacent tips
have common edges, the envelopes then closing to form a
polygon of N* sides of integer N*. This gives 2a*
=x(1+2/N*), so that if we assume that the pattern
evolves at marginal stability, we predict selection of a*
that satisfies

2r—2a*=r/{1+ 1 +m(a*)1n}. )

We now turn to the higher-order corrections of (5)
corresponding to subdominant singularities in the ASF.
We find that, unlike the leading term, these can be oscil-
latory, which may be significant in determining the self-
similar shape of the cracks pattern. Figure 3 shows how
these may be found graphically (see caption). In gen-
eral, there is a finite number of real solutions for m, fol-
lowed at larger Re(m) by an infinite sequence of com-
plex solutions. As F(2a)=sin2a/2a approaches zero the
real solutions increase in number and they approach the
set of half-integer values, whereas for F(2a) > 0.125. ..
only the two leading solutions displayed in Fig. 2 remain
real. Complex m=p+iv corresponds to oscillatory
terms in the ASF varying as r*coslvin(r/ro)]. A natu-
ral periodicity in Inr of the crack pattern may be selected
by our periodic ASF solutions; these correspond to
“free” (spatial) oscillations in the sense that they can be
sustained near the tip without corresponding oscillatory
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terms in the boundary conditions to derive them. Al-
though we do not have a complete theory of the selection
of spacing of major sidebranches, we anticipate that the
selection may be strongly biased by resonant am-
plification of corrugations in the crack envelope at spa-
tial frequencies (in Inr) matched to these modes. More-
over, because of the power-law suppression (u) of in-
creasingly high frequencies (v), we expect the lowest
modes to manifest most in real patterns.

Periodicity in Inr is usually the fingerprint of self-
similar patterns; such structures are invariant under
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FIG. 3. The values of sin(2ma)/2ma, when it is real, as
a function of &=Re(2ma). The primary branch, when
Im(2ma) =0, is F(&)=sin&/é. The lines of the secondary
branch shoot off from the maxima, where F(&) =cos&. An
intersection of A=F(2a)=sin(2a)/2a with the primary
(secondary) branch represents a real (complex) solution for m
in the odd version of (5). Similarly 4=—F(2a) solves the
even version. When 0.218 = F(2a) =0.125 [i.e.,, when 2a is
within the range (1.1557,1.75x), say, line B, there exist no
real solutions for £= 2z, and the second- and higher-order
corrections are all complex. As the value of F drops below the
value of F(&) at a local maximum, a complex solution disap-
pears by splitting into two real roots, and the oscillatory correc-
tion is pushed to a higher order.
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scale transformations and many of their properties follow
a power law in the length scale. To the best of our
knowledge this is the first exact solution that could ex-
plicitly select the formation of self-similar patterns in
any aggregate. The wave number of the lowest mode in
Inr space is shown (dash-dotted line) in Fig. 2 as a func-
tion of 2a. A way to test this mechanism of triggering
the sidebranches formation is to inspect real aggregates
of quasistable cracks and check that the wavelength,
27/v, and the head angle relate as we suggest.

Because of the independence of the solutions to the
ASF of Poisson’s ratio, the analysis presented here does
not depend on the compressibility of the medium. This
implies that these results are universal, applying to any
2D isotropic elastic system under the above boundary
conditions. The difference between any two such systems
can only stem from the different constitutive relations
between the velocity v of the tip propagation and the
magnitude of the local stress field it experiences,
v(r) =f(V2®(r)). Note, though, that the instability dis-
cussed above appears only when the function f increases
with its argument. When the reverse is true the oscilla-
tory solutions are suppressed and the crack smooths
out. '

The present analysis assumes implicitly that (i) linear
elasticity is applicable, which may fail for many types of
cracks, and (ii) that there is no reclosure of cracks, thus
excluding the boundaries from bearing stress across the
surface. While the latter is intuitively very plausible,
especially in an etching model, we cannot exclude this
possibility in general. Any mechanism leading to such
closure would be sensitive to the elastic displacements,
and hence to the relative elastic constants.

It is hard to make a critical comparison of our results
with the simulations of Refs. 7 and 8 because of their
limited results. Although it is difficult to define precisely
a number of selected arms from the simulations, the pat-
terns obtained in Ref. 8 are consistent with our predicted
trend of how N* should decrease as 7 increases. It is in-
teresting to note that this quantity, which we predict, ap-
pears to be independent of lattice details in the simula-
tions, whereas the fractal dimension— for which we have
been unable to arrive at any off-lattice prediction— does

not appear to be universal. Perhaps we have yet to find
the natural “masslike” measure for these objects.
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