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and Its Relation to Saint-Venant s Strain Compatibility Conditions
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Combining some results from the classical theory of elasticity with the modern functional derivative

approach to nonuniform systems, we obtain a well-defined stress tensor for nonuniform equilibrium fluids

and solids. This stress tensor is symmetric and satisfies the force balance equation, so it provides an

unambiguous route to quantities such as the surface free energy. The ambiguities associated with earlier
stress-tensor definitions are traced back to their failure to take account of Saint-Venant's strain compati-
bility conditions.

PACS numbers: 64.90.+b, 03.40.-t, 05.20.-y, 64.70.—p

Stress-strain relations are used in a wide variety of
physical problems. ' While the strain tensor of a
nonuniform system can be easily defined, ' this is not the
case for the stress tensor. Indeed, as noted in the recent
monograph of Rowlinson and Widom, there still
". . .appears to be no unique definition of this quantity.

"
Although the very notion of a stress tensor of a nonuni-
form fluid was introduced some forty years ago by Kirk-
wood and co-workers, ' it has been known for some
time that their definition is incomplete in that it de-
pends on a line integral whose value is contour depen-
dent. This is quite disturbing from a practical point of
view since, as emphasized by Schofield and Henderson, 5

this ambiguity extends to the notion of a "surface of ten-
sion" which Gibbs introduced in defining the surface ten-
sion of a liquid drop (or a curved interface), although
the physical consequences of the surface tension of drops
are currently observable in, e.g. , nucleation phenomena.
In the present Letter we provide an unambiguous
definition of the stress tensor by combining some results
from the classical theory of elasticity6 with the more
modern functional derivative techniques familiar from
the theory of nonuniform fluids. Although intrinsically
more complicated than the earlier proposals, ~ s the
present definition is equally amenable to explicit calcula-
tions of observable quantities such as the surface tension
and the surface of tension. Finally, the failure of the
previous attempts to construct a well-defined stress ten-
sor is explained as arising from the fact that they all
overlooked the important role played in this construction
by Saint-Venant's strain compatibility conditions.

Following the general ideas of the classical theory of
elasticity, ' we use a displacement field u(r) to describe
a small deformation of the original system resulting
from locally translating any point r into r+u(r). This
deformation will also slightly distort the system, an eNect
which can be characterized by the distorsion tensor
d(r) -Vu(r), in dyadic notation. The latter can always
be resolved into a local rotation rior) —,

' [d(r) —d (r)],

originating from the antisymmetric part of d, and a local
strain F(r) —,

' [d(r)+d (r)], due to the symmetric part
of d, with d denoting the transpose of the tensor d.
Whereas the strain tensor F(r) can obviously be ob-
tained by differentiation from the displacement u(r), it
is less often noted that the converse is also true: Given
a symmetric tensor field ~ (r) we can obtain the corre-
sponding u(r) from the so-called Kirchhoff-Cesaro-
Volterra relation, '

u(r) „c&, ,&[V(l)+(l —r) x [Vl xF(l)]j dl, (1)

where the line integral can be taken along any contour
C(rp, r) going from rp to r, with rp being a fixed point of
the deformation, the existence of which is guaranteed by
the fact that during the deformation the system as a
whole has undergone neither a global translation [u(rp)

0] nor a global rotation [Vxu(rp) 0]. As first noted
by Saint-Venant, the six components of 7will not over-
determine the three components of u because for any
symmetric tensor e which is compatible with a strain ten-
sor, chas moreover to satisfy the following conditions,
only three of which are independent, known as "Saint-
Venant's strain compatibility conditions":

IncF(r) -=V & [Vx F(r)] t 0, (2)

where Inc denotes the so-called incompatibility operator,
so that (2) states that the incompatibility of 7, or Inca,
should vanish for any realizable strain tensor. The im-
portant point to note is that (2) also guarantees that the
integrand of (1) is a total differential and hence that (1)
yields a u(r) field which is independent of the particular
contour C(rp, r) chosen for its evaluation. Hence, for
any (single-valued) u(r), Eqs. (1) and (2) establish a
unique relation between V(r) and u(r) in any (simply
connected) system.

Suppose now that we would like to generalize the stan-
dard Thomson" definition of the stress tensor as being
the derivative of the free energy with respect to the
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strain tensor' to a nonuniform system. This definition

emphasizes from the outset the use of the stress tensor as
an intermediary in work-related calculations, an em-

phasis which is only implicit in the earlier formula-
tions. ' Let us therefore denote by F=F[u] the
Helmholtz free energy of the deformed system viewed as
a functional' of u(r), which by virtue of (1) is itself a
unique functional of V(r). Here it will be understood
that the temperature, number of particles, and unde-

formed volume of the system are kept constant
throughout and therefore these variables will not be indi-

cated explicitly in what follows. Let us proceed now by
computing the desired local response of the free energy

the displacement u(r) against the external forces:

8'[u] = dVu(r). f(r), (4)

f(r) ktts vp)(r)+& dV'pq(r, r')Vp(lr —r'I), (5)

where, to first order in u(r), f(r) can be taken to be the
external force density associated with the undeformed
nonuniform system. In any explicit calculation of (3),
the external force density f(r) of (4) has to be related to
the internal forces by a statistical-mechanical relation
such as the Born-Green- Yvon equation

(3)

to a local change in strain. At hnear-response order,
w ere p)(r) an pq(r, r') enote, respectively, the one-

which is all that is needed in order to characterize the
response of the undeformed system, this response R(r)

the temperature, or by the equivalent relation in terms of
can be obtained from the direct correlation function. ' As will become clear,

bF [u] b W[u] the details of this relationship are not genuine to the
present problem, which is macroscopic in nature and
hence independent of any particular property of the

where we took into account that this free-energy change Hamiltonian or of any particular statistical-mechanical
can be identified with the reversible work W[u] done by representation of f(r). Combining now (1) and (4) we

obtain, after computing the functional derivative in (3),

R(ri) ' dV c( )dl[f(r)+[f(r) x(l —r)] xVtjb(r) —I) '

, sym
(6)

where [ t],„ is a shorthand notation for the symmetric
part of t, e.g., [ t I,„—,' ( t+t ). Notice that the sym-

metry of R follows directly from the symmetry of e via
Eq. (3). This then would solve our problem were it not
for Eq. (2). Indeed, Saint-Venant's condition (2) can be
viewed as stating that only three of the six components of
e can be varied independently whereas (6) has been ob-
tained from (3) by assuming all six components of e to
be independent. Allowing this violation of (2), makes
Eq. (6) contour dependent.

To avoid this we now define the stress tensor carr) as
being a new free-energy response which is constrained to
satisfy Saint-Venant's condition, since only in this case
will our operations on the free energy acquire a well-
defined meaning. The restriction (2) is most easily ap-

plied in Fourier space since if e(k) =fdVF(r)
xexp(ik r), (2) simply becomes

kx F(k) xk 0. (7)

o(k) =R(k) —kx [kxR(k) xk] xk

so that kxc~rk) xk=0 and a(k) will have no nonzero
components in Saint-Venant's null space. Returning
now to the original r space we obtain by inverse Fourier
transform of (8) the final definition of the stress tensor
cr r):

We can thus define cork) as the orthogonal complement
of R(k) with respect to the "null space" defined by (7)
(k-k/lkl):

1 1
carr) R(r) — dV) Inc) dVq Inc2R(rq), (9)

4nlr —r) I
" 4nlr) —r2I

where the indices 1 and 2 indicate on which variables (ri or r2) Saint-Venant s Inc operator [see (2)] is acting. Notice
moreover that when using (6) in (9) only the difference of the two terms will be well defined, not each term separately.
It can now be shown' that the stress tensor defined by Eqs. (6) and (9) has the following properties. (i) It is sym-

metric: cr (r) carr), a property which follows here directly from the symmetry of e(r) via Eqs. (3) and (8) or (9).
Consequently, both the linear- and angular-momentum conservation laws can be treated on equal footing' in terms of
this stress tensor. (ii) It satisfies the force balance equation: V. carr) —=V. R(r) = —f(r). Hence, body forces can al-

ways be resolved into surface stresses. (iii) It satisfies a Saint-Venant-like condition: Vx (Vx cr) =0. This condition
garantees' that the difference on the right-hand side of (9) is independent of the contour used to compute Eq. (6). (iv)
If InchÃ(r) 0, then the change in free energy resulting from this change in strain, be (r), reads

bF= dVa(r):be(r) = dVR(r):BV(r) = dV„& )[f(r)+[f(r)x(l —r)]xVt]. be(1) dl, (10)
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where the line integral of (10) is contour independent. '

The present unambiguous definition of a stress tensor
produces thus a highly nonlocal object [see the second
term in the right-hand side of (9)] which, just as the
strain tensor, contains only three independent com-

ponents. This, however, is sufficient in order to charac-
terize the three components of f(r) or any external
work-related quantity such as the surface tension or the
surface of tension. More detailed expressions will be

given elsewhere. '

Finally, the difficulties with the earlier attempts to
construct a stress tensor for a nonuniform fluid can now

be easily understood. First, the force balance equation,
V o —f, which is always taken as a starting point
clearly underdetermines a since there are only three
equations to determine all the components of o. Second,
any expression for the full o which is "extracted" from
the force balance equation but which does not satisfy
Saint-Venant's condition, Inca =0, operates in the null

space of the strain which leads to contour dependence. '
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