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Exactly Solvable Heterophase Fluctuations at a Vibrational-Entropy-Driven
First-Order Phase Transition
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We propose a new Hamiltonian (intended to mimic solid-to-solid diffusionless martensitic transitions)
that displays a vibrational-entropy-driven, first-order phase transition. This model employs anharmonic
intersite couplings that alter the stiffness of the vibrations in the product phase relative to the (high-
temperature) parent phase. Our studies (of a one-dimensional, pseudotransition) clearly show (i) that
the heterophase fluctuations connecting the parent and product phases are an equilibrium property, and
(li) the associated central peak in S(q, to) has a very unusual temperature dependence.

PACS numbers: 63.75.+z, 64.70.Kb, 81.30.Kf

The theory of the dynamics of first-order phase transi-
tions relies on many standard models that dominate sta-
tistical mechanics. However, for studies concerning the
modeling of diffusionless structural phase transitions,
so-called martensitic transformations, none of the exist-

ing models are adequate. To see this, consider a se-

quence of transitions undergone by the simple metals.
Upon solidification, Li, Na, as well as many other met-

als, assume the bcc form. With further cooling these
materials change to their (presumed) T=O form, viz. ,
one of the close-packed layered structures, e.g., the 9R
lattice. The equilibrium aspects of these transitions are
well described by conventional theories, and rely on the
low vibrational energies of the bcc phase; i.e., these
structures are stabilized by the large entropy of the rela-
tively soft bcc lattice. To be specific, there is a low-

lying phonon branch, corresponding to the Zener elastic
mode, present in the bcc but not the low-temperature
phases. Thus, one should envision such solid-to-solid
transformations as occurring from a change of the
phonon-dispersion curves. In order to model such transi-
tions in a simple way one must begin with a model that
possesses the ability to show a change in the vibrational

entropy. Such a simple model Hamiltonian was recently
proposed by one of us, and here we display the interest-

ing dynamics obtained in a study of this model.
Consider the following (temperature-independent)

Hamiltonian for an arbitrary lattice with sites labeled

by index i:

H =g + V„(u;) +g V(u;, ul),
i 2m (ij )

~here

and

V(u;, u, ) = —,
' k(u; —uj)'

+ —,
' a(u + uj)(u; —u, ) ';

the symbol (i,j) denotes near-neighbor pairs. The con-
stant u; can be viewed as the displacement of an ion

from its lattice position. The on-site potential V„(u)
with A, 8, and C all positive is chosen to have a metasta-
ble minimum at u 0, and doubly degenerate stable
minima at u ~un. Further, these three parameters
may be selected to specify a length scale, an energy
scale, and the ratio of the barrier-height to the well-

depth energies. We have assigned the length scale such
that un 1. Setting the barrier height to 300 (in temper-
ature units) determines the energy scale. We are in-

terested in the case where the intersite coupling strength
is much stronger than the on-site potential's localization
energy. This is known as the displacive limit, and in

this limit we expect only weakly anharmonic vibrations.
Note that under u; —u; for all t, H is invariant, and

thus (u;) 0 for all temperatures; consequently, any
low-temperature transition to the stable wells of V„
must be a true symmetry-breaking phase transition. To
be specific, V„ is the simplest potential with this charac-
ter relevant to a first-order phase transition. However, it
is the intersite couplings which furnish us with the in-
teresting behavior.

In order to understand the new intersite coupling term,
first consider the case a=0. The coupling above and
below the transition is purely harmonic, with strength k.
The effect of a is to produce an effective intersite cou-

pling that is different above and below the transition.
Above the transition, (u )«1, so the coupling strength is
-k. However, below the transition, (u )—1, and thus

(u; +uj )-2; therefore, the coupling is essentially k+a.
This increased coupling strength produces stiffer pho-
nons, and thereby lowers the vibrational entropy.

This entropy difference plays an important role in
"driving" the transition. In the absence of the new term
(a =0), there is a change of the system's behavior as the
temperature is varied when the temperature is of the
same order as the energy difference between the stable
and metastable wells. The temperature regime over
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which the change occurs is broad. By adding the new
term (aAO), the vibrational entropy of the low-
temperature phase is lowered, and thus this enhanced
difference in free energies as a function of temperature
sharpens the transition. Our exact calculation demon-
strates that this new term provides a modification to the
harmonically coupled Hamiltonian that displays these
effects.

In order to establish a relevant value for a, we note
that above the transition the anharmonic coupling pro-
duces a temperature-dependent dispersion relation
(within self-consistent phonon theory; see below). For
a-k, the zone-boundary phonons change relative to the
zone-center phonons by -50% for a temperature change
of —1000 (in our temperature units). This corresponds
to changing the effective coupling by -25% over this
temperature interval. Thus, choosing a =k allows for a
reasonable relative temperature variation of the
quasiharmonic restoring force.

In one dimension the partition function may be solved
exactly using the transfer-integral (TI) technique. Al-
though there is no true transition in one dimension, due
to the domain-wall entropy, the exact calculation demon-
strates the effect of the new term on the thermodynamic
quantities. The partition function may be written as
Z Z~Z„, where Z~ is the one-dimensional free-particle
partition function

Z, - e '" "'
dp =(2zmk, r)a4

This gives the usual contribution to the specific heat of

—,
'

kq, there is no interesting behavior from this term, and
it will henceforth be ignored. However, the config-
urational partition function

Z„= +exp[ —P[V„(u;)+V(u;, u; i i)]Idu; (3)

leads to nontrival behavior. Following the prescription
for a TI calculation of Z„, we choose functions p„(u) to
satisfy the eigenvalue equation

The eigenfunctions and corresponding eigenvalues may
be found numerically, and thus all equilibrium thermo-
dynamic properties may be found exactly.

In Fig. 1 the heat capacity for the system is shown as
a function of temperature, for the cases a =0 and k. For
a 0, there is a broad peak in the heat capacity. This is
related to the Schottky anomaly. The case of nonzero a
shows a very narrow peak, with a very large maximum at
T Ti =138.7. For a real first-order transition, this
peak would be a delta function, with integrated area
equal to the latent heat. We have calculated the mean-
square displacement and find that this peak corresponds

exp[ —P[V„(u;)/2+ V„(u, )/2

+ V(u;, ui )jj lid„(u; )du; =X„y„(uJ ), (4)

and relabel the p„such that

xo) I)|I)
In the thermodynamic limit, the configurational partition
function is then

(5)
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FIG. 1. The specific heat vs temperature of the a =0
(dashed curve) and a k (solid curve) systems. The parame-
ters appearing in the on-site potential in Eq. (1) have been tak-
en to have the values B/A 4.209 and C/A =B/A —I (ensur-
ing the minima appear at u ~ I ), and A is chosen to lead to
a barrier height of 300, and a well depth of 75. Also,
k/A 0.921, corresponding to the displacive limit.
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FIG. 2. The entropy vs temperature for a =0 (dashed

curve) and a k (solid curve) for the same values as used in

Fig. 1. The broad "transition" found for a =0 is sharpened to
a near step for a k.
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where pp is the eigenfunction with the dominant eigen-
value. Figure 3 shows this distribution for T 138.5 and
138.9. These temperatures are just above and just below

Ti, where the peak in the specific heat occurs. The
figure shows just above the transition the system is al-
most completely localized in the center well, with small
dynamical fluctuations into the side wells. These are
long-lived, heterophase fluctuations For sligh. tly higher
temperatures, these fluctuations decrease dramatically
until the probability density in the side wells is essential-

ly zero. lust below the transition, analogous but opposite
behavior is found, with the system mainly in the side
wells, but with small fluctuations into the metastable
minimum. For a 0 the distribution broadens severely
as the temperature is decreased, slowly spreading out

II
II

II

I
I

I

II

I
I
I
I
I
I
I

I

I
I
I
I
I

I
I
I
I

I\

I
III
) I

I
I I

I
I I

I
I I

I
I
I

I I

I
I
I
I
I

I
I
I

I I

I

I
I

I

-1 0
ll

FIG. 3. The probability distribution function P(u) for a=k
at T 138.5 (dashed curve) and T=138.9 (solid curve). The
specific heat peak in Fig. 1 occurs at T=TI—= 138.7. The
heterophase Auctuations, both above and below the transition,
corresponding to parent-to-produce phase motion, are evident.

to a sudden increase in (u ). Figure 2 shows the entropy
for these two situations. The nonzero-a case appears
discontinuous; for dimensions greater than one, we ex-
pect a true discontinuity corresponding to a real transi-
tion. More importantly, we see that the new term has
indeed increased the change in entropy, relative to the
a -0 case, and that the increased entropy difference has
stabilized the high-temperature phase. The sharpness of
the transition due to the enhanced entropy change is
manifest.

The above equilibrium properties show that we are
studying a vibrational-entropy-driven first-order phase
transition. We may also use the TI technique to show
the existence of heterophase fluctuations for tempera-
tures near Ti. The probability density P(u) of finding a
particle in the range from u to u+du is given bys

P(u) ce
i yp(u) i

',

Here, u is the average displacement. The true free ener-

gy F satisfies the variational equation

F ~ —kttTlnz, +(H H, ), =F,—, — (8)

where Z, is the partition function for the trial Hamil-
tonian, and the average is with respect to the phonon
basis. By varying the trial free energy F, with respect to
the parameters u, p, and 0, we derive self-consistent
equations for these parameters. The high-temperature
phase is characterized by u 0. In the low-temperature
phase, we have allowed u to vary as a function of tem-
perature. This allows for the fact that the side wells are
not symmetric about their minima, u = ~ l.

This approximate treatment agrees quantitatively with

the exact calculation, except for temperatures very close
to T i. Above T i the predicted free energy is within

0.05% of the exact value. Slightly below Ti, where the
method is least accurate, this gives the correct free ener-

gy within -2%. The predictions for the average energy
per particle, the entropy, and the heat capacity are also
very close to the exact values. Below Ti, this calculation
does not allow for the domain-wall entropy. This causes
a small discrepancy between the approximate treatment
and the exact calculation. Also, the theory is not as ac-
curate for the asymmetric minima. The exceptional
agreement between the two calculations shows that away
from Ti the system is effectively harmonic.

Although the static equilibrium properties may be cal-
culated using the TI technique, this method does not pro-
vide for an examination of the dynamics near the transi-
tion. Clearly, we would like to understand the character
of the heterophase fluctuations near the transition. To
study these dynamical properties we have performed
molecular-dynamics (MD) simulations for our 1D sys-
tem. As a check of the accuracy of these simulations, we
have found that they exactly reproduced the TI results
for the internal energy and heat capacity. We have also
reproduced the susceptibility and the probability density
for T & Ti.

Our principle interest in performing the MD simula-
tions is to calculate the dynamical structure factor:

S(q, rv) =—g (u (t)up(0))e"" "dt.
J

(9)

into the side wells. The change in behavior is very gra-
dual, and in essence P(u) is simply exp' —PV„(u)j:
Minimal vibrational-entropy effects are present.

The above results show that away from the immediate
region of Ti, the system is highly localized in one of the
wells. This suggests that the system is harmonic away
from T~. Thus, we have performed self-consistent pho-
non calculations, ' i.e., a harmonic theory that includes
the lowest-order renormalization of the Hamiltonian by
thermal effects. We use the trial Hamiltonian

H, -g[-,' p + —,
' II'(u; —u)'+ —,

'
y(u; —u;+i)'].
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FIG. 4. The dynamical structure factor S(q, to) at one de-
gree above Ti at q 0.2 (solid curve) and q 0.6 (dashed
curve), where q I corresponds to the zone boundary. The
central peak is present in the q 0.2 spectra, and product-
phase phonons are in evidence at high frequencies.

In practice, we have calculated S(q, co) for each of a set
of different time periods to produce an averaged spec-
trum. In addition, we convolute the data with a smooth-
ing function to eliminate noise from the data.

For T ) Ti, S(q, to) shows sharp peaks corresponding
to long-lived phonons. The phonon frequencies corre-
spond very closely to those predicted by self-consistent
phonon theory [see Eq. (7)]. The lifetimes of the pho-
nons increase as the system is cooled from high tempera-
tures, viz. , as the system becomes more localized within
the central well. In addition to the phonon peaks,
S(q, co) has structure near co 0 for small q that is asso-
ciated with the heterophase fluctuations. One such spec-
trum is shown in Fig. 4, which corresponds to one degree
above the transition temperature. We have been able to
fit the central peak by a diffusive mode's dynamical
structure factor" where the linewidth varies as
I -Do+Dtq +Dzq"; this width is effectively indepen-
dent of temperature. However, the intensity of the peak
is strongly temperature dependent, and the central peak
is only observed over a small temperature range above
Ti. In fact, below Ti the central peak disappears, and

one only obtains the product-phase phonon peaks.
One of the most informative aspects of Fig. 4 is the ex-

plicit proof these data provide of the long-lived nature of
the heterophase fluctuations. To be specific, the two
high-frequency peaks correspond to the product-phase
phonons, and thus the system is difl'using from the parent
(central) well into the product (side) well (recall that
this is the stiA'er phase and thus the corresponding pho-
non frequencies are higher), and then staying there long
enough to fluctuate as if it were product phase. The life-
times of these fluctuations are long enough for the
product-phase phonon peaks to be well formed.

In conclusion, we have introduced a new Hamiltonian
that produces a vibrational-entropy-driven first-order
phase transition with long-lived heterophase fluctuations
of a diffusive character in only a very small region
around the transition.
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