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Quantum Critical Phenomena in One-Dimensional Bose Systems
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We use quantum Monte Carlo techniques to study the critical properties of an interacting-boson mod-
el in one dimension. The phase diagram consists of a series of (Mott-) insulating phases at commensu-
rate fillings and a superfluid phase. From the critical behavior of the superfluid density and the compres-
sibility we measure the exponents v and z, which agree with predictions based on a scaling analysis.
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The past few years have seen a major increase in ac-
tivity in the field of strongly interacting fermionic sys-
tems. Besides high-temperature superconductivity, im-

portant issues are the identification of new exotic phases,
the Mott-type metal-insulator transition, ' and the role of
disorder, which can localize the electrons. The inter-
play of the two localization transitions is currently the
subject of close scrutiny. Our understanding of the
corresponding phenomena in Bose systems in much less
developed in spite of its quite general experimental
relevance. Liquid He and short-correlation-length su-

perconductors are examples of the ordered case, while
He absorbed in porous media and homogeneously

disordered and granular superconductors (where the
Cooper pairs can be approximated as bosons) are natural
realizations of the disordered case. The theoretical in-

terest in these systems stems from the fact that their
phase transitions are driven by quantum rather than
thermal fluctuations. The analogs of the above Mott and
Anderson transitions were only recently described by
scaling theories. s However, these analytic approaches
usually work with expansions around the upper critical
dimension, so in low dimensions an approximation-free
numerical analysis is very useful as an independent test
of the results. Motivated by this, we report here on a
quantum Monte Carlo study of the one-dimensional,
strongly interacting Bose liquid.

We study the simplest model for interacting bosons on
a one-dimensional lattice,

P = —tg(att+iat+H. c.)+g( —pNt+ VNi ) . (1)
I I

Nt =at at and at is the boson annihilation operator at site
l. t is the hopping parameter, V is a boson repulsion, and

p is the chemical potential. The T=O phase diagram
can be sketched as follows. At t/V=O every site is oc-
cupied by an integer number n of bosons which rnini-
mizes the on-site energy: e(n) = ltn+Vn .—Thus in
the interval 2n —1 (p/V(2n+1, the density (occupa-
tion number per site) is pinned at the integer n. Inside
this interval there is a finite gap in the one-particle spec-
trum and so the system is insulating. Correlations are

localized with a finite correlation length g and the
compressibility x vanishes; i.e., these states are in-
compressible insulators. The gap decreases as t/V in-

creases and eventually vanishes, giving the insulating
phases lobelike shapes in the p/V vs t/V plane. s At this
critical value of t/V the kinetic energy overcomes the
gap, the system becomes a conductive fluid, and this
delocalization of the bosons leads to the formation of a
superfluid state at zero temperature.

The phase transitions taking place at a generic point of
the phase boundary belong to a different universality
class from that at the tip of the lobes. This can be seen
by performing a Hubbard-Stratonovich decoupling of
the kinetic term and then performing a curnulant and a
gradient expansion to obtain the effective action

S dkdko(2 (k +to +r)+irog]ltlr(k, co)l

+u dx dr I yl (2)

where g vanishes at the tips because of particle-hole sym-
metry. Therefore, when the transition occurs at integer
densities, it belongs to the universality class of the
(1+1)-dimensional XY model; i.e., it is a Kosterlitz-
Thouless (KT) point. Here we do not analyze the mul-
ticritical aspects of this transition. On the insulating
side, the inverse correlation length and consequently the
gap are expected to vanish as g '=Es=exp( —1/

Jx—x, ), where x =t/V. In the delocalized phase,
superfluid correlations decay as a power law with ex-
ponent K, where (trK) =(p, tet) ', a. is the compressi-
bility, and p, is the superfluid density. Away from the
commensurate values g&0; thus the propagator acquires
a special form and consequently when an e expansion is
developed around the upper critical dimension (d, =2),
all of the poles lie in the upper half plane and so all the
perturbative contributions vanish. That means that the
critical exponents assume their mean-field values and one
expects the correlation length exponent v=0.5 and the
dynamical critical exponent z =2. With these values the
generalized Josephson relations yield for the superfluid
density and compressibility exponents /=a =v(z —1)
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=0.5, when expressed as a function of p —p, . This new

type of phase transition is driven by density fiuctuations,
as opposed to the XY transition, which is driven by phase
fluctuations. We note that an explicitly one-dimensional
formulation of this problem can be developed leading to
an action very similar to the sine-Gordon model. The
periodic potential gives rise to one extra term containing
the density of the bosons. So, it is quite natural to at-
tempt a renormalization-group analysis directly in one
dimension. Unfortunately, the density scales to strong
coupling at a generic point of the phase boundary, thus
preventing the extraction of the critical exponents. In
what follows we determine the phase boundary and the
above-mentioned exponents to test the reliability of the e

expansion.
We perform our Monte Carlo simulations using the

"world-line" algorithm' " on a one-dimensional chain
of N sites with periodic boundary conditions. This in-

volves rewriting the partition function and any operator
expectation values of interest as a path integral by
discretizing the imaginary time P into L subintervals of
length r P/L. We use the checkerboard decomposi-
tion' to evaluate the infinitesimal imaginary-time evolu-
tion operator e ' . This "Trotter approximation" ' '
yields values for observables which differ from exact re-
sults by corrections of order r . We have chosen r so
that these systematic effects are typically less than a few

percent. We have also examined the effect of finite size

by doing simulations on different size systems and com-
paring the observables. We have found that a 16-site
chain does not suffer from any significant finite-size
effects, and the only occasions where we had to use
bigger systems were when we needed densities, p =Nb/N,
that cannot be obtained on a 16-site system.

Our simulation works within an ensemble which con-

serves both particle (Nb) and winding numbers. Howev-

er, by looking at the energy as a function of occupation,
we can extract the chemical potential and make contact
with grand-canonical formulations. Since nonzero-
winding-number configurations are absent with free
boundary conditions, their exclusion is not relevant in the
thermodynamic limit. ' ' We have verified our code
against weak- and strong-coupling analytic calculations,
and against exact diagonalization on small clusters in all

regimes of temperature T, and couplings t and V. In the
work reported below, unless otherwise indicated, we have
chosen t 1, V 20. We have checked that the values of
P are large enough to obtain ground-state properties by
doing the simulation at various values and ensuring that
averages of thermodynamic quantities did not change.
Further details will be reported elsewhere. 's

The effective one-particle transfer energy, t,fr t
x(aiqlal+aPal+1), has been used in variational-wave-
function studies of the Mott transition'7 and in Monte
Carlo simulations to examine the interpolation between
weak coupling and the strong-coupling Heisenberg re-
gime in the Hubbard model. ' In Fig. 1, we show this
quantity as a function of boson occupation. The sharp
minima at integer fillings corresponds to incompressible
insulating phases as shown below. These cusps lead to
discontinuities in the slope of the total energy Elv at in-

teger fillings and hence to the opening of compressibility
gaps. This can be seen by plotting (Fig. 2) the density p
as a function of the chemical potential, p =Ejv+~ —Ey,
which is evaluated numerically. The three plateaus cor-
respond to the first three lobes of the Mott-insulating re-

gions in the p/V vs t/ V phase diagram. For t/V=0, the

gap is 2 and decreases as t/V increases. The n =1 lobe
of the ground-state phase diagram is shown in Fig. 3.
The cusp-shaped approach to the tricritical point is con-
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FIG. 1. The kinetic energy is shown as a function of occupa-
tion p for j 1, V 20. Different symbols represent various
choices of lattice size and imaginary-time discretization length

Error bars are smaller than the data points.

P./'V

FIG. 2. The occupation (density) p as a function of chemi-
cal potential, p E/v+1 —E/v, going across the first three lobes
of Mott-insulator regions. The solid line is to guide the eye.
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FIG. 3. The first lobe of the zero-temperature phase dia-
gram.
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j (r) = g [x((r+ I ) x((r) I, — (3)

where xt(r) is the location of the Ith boson at imaginary

sistent with the KT form for Eg discussed above. We
find that the tip of the lobe is located at t/V 0 43.
~0.02. We bracket this critical value by extrapolating
the gap to zero from the insulating side, and by studying
the vanishing of p, from the superfluid side. The super-
fluid density is expected to have a (nonuniversal) jump
at the transition. However, at KT transitions the rapidly
diverging correlation length usually leads to large finite-
size rounding. We have not performed any detailed
finite-size analysis at this point, but if we identify the lo-
cation of the "jump" from the largest slope of p, vs t/V,
these two procedures yield values in agreement within
the cited error bars. There are no exact theoretical pre-
dictions for this quantity. ' Preliminary results indicate
that the lobes at higher filling n terminate in a manner
consistent with the 1/n mean-field prediction.

The slope in Fig. 2 gives the compressibility «=Bp/
8p. It is seen that «vanishes in the gaps and diverges at
the boundaries. The evaluation of the corresponding
critical exponent a requires data with exceedingly small
statistical fluctuations as it involves two numerical
differentiations. We obtained such data for the 16-site
chain where the scaling region spanned half a decade
and gave a=0.52. Using the hyperscaling relation
a = v(z —1), where v is the correlation length critical ex-
ponent, and using vz -1 gives v= 0.48. This is con-
sistent with the mean-field value v=0.5, in agreement
with arguments suggesting that the lower critical dimen-
sion for this model is indeed dI =1.

The superfluid density p, satisfies "p, ~p(W ), where
8'is the winding number. Defining

JVb
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FIG. 4. &P(co) is shown as a function of frequency on a
N 16 site lattice for two diA'erent fillings, Nb 15 and 16.

time r, we see that the winding number satisfies

(4)

This relation could be used to measure (W ) if one were
working in an ensemble that included nonzero-winding-
number configurations. Alternatively, we can measure
the correlation function d'(r) (j(z)j(0)) for all z, and
perform a discrete Fourier transformation to obtain
d'(to). Because we are working in the W=G sector, we
always have dt(G) 0. However, the extrapolation of
d'(co) to to 0 can lead to a nonzero value which sig-
nals superfluidity. 'o The superfluid density is then p,
a:pdt(to~ 0). Figures 4(a) and 4(b) show d'(co) as a
function of ao for N 16 sites and Nb =15 and 16 and
for V greater than its critical value. The behavior of
ot(to) shows that p, goes from nonzero to zero as the oc-
cupation goes from noninteger to integer. For Nb =17,
d'(to) looks like the Nb =15 case, signaling a return to
the superfluid phase. Combining this with our earlier re-
sults for x, we conclude that the phase transition is from
a compressible superfluid to the incompressible Mott in-
sulator.

Finally, we can measure the critical exponents associ-
ated with the behavior of the superfluid fraction near
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the transition. In Fig. 5 we plot logip[d'(ro 0)l vs

log&o(Ip, —pI). The critical density p, takes integer
values and is 1 at the first lobe. This yields a straight
line with a slope =1.06. When the compressibility is
singular at the transition, as is the case here, the super-
fluid density scales as p, —Ip, —pI' '. This gives
z =2.06 for the dynamic critical exponent, and since
zv=l we obtain v=0.49. These values are consistent
with the mean-field values z r 2 and v r=0.5, as well

as the value for v derived from the divergence of the
compressibility.

In summary, for the density-driven Mott-insulator to
superfluid transition at fixed V, we have obtained the
critical exponents v 0.49, z 2.06, in good agreement
with theoretical predictions. We have also studied ~ and

p, for the first three lobes, and determined the phase
boundary of the first lobe. We found its approach to the
tricritical point to be in qualitative agreement with the
form predicted by a KT transition. We are currently ex-
amining the effect of disorder in this model, in particu-
lar, the role it plays in the recently proposed "Bose-
glass" phase.
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