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Long-Time, Large-Scale Properties of a Randomly Stirred Compressible Fluid
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The large-scale, long-time properties of a compressible fluid stirred by a Gaussian random force with

correlation (ff, & ~ k ' are investigated. It is shown that when e =4+y —d & 3 (d =space dimension)
the effective sound velocity becomes scale dependent in the limit k —0 and the fluid obeys a universal

equation of state. The effective Mach number is also scale dependent, reaching a fixed-point value
Ma*(k) ( I when k 0. The predictions of the theory are compared with the results of direct numeri-

cal simulations.

PACS numbers: 47.25.Mr

The Navier-Stokes equation for an incompressible
fluid stirred by the Gaussian random force defined by the
pair-correlation function

(f;(k, n)f, (k', n'))

|xD ik 'P; (k) b(k+ k') b(n+ n') (I )

[P„(k)=b„-k, k, /k 2]

is a generic model describing important states of the
fluid. First of all, when y = —2 and D 1

=Tvp/p

(T, vp, and p are the temperature, molecular viscosity,
and density, respectively), the model describes both the
static and dynamic properties of the fluid in thermo-
dynamic equilibrium. ' The case y & —2 corresponds
to a nonequilibrium situation. When y d (d being the
space dimension), the velocity correlations generated by
the Navier-Stokes equations with the forcing function
(1) resemble qualitative and quantitative features of ve-

locity correlations in fully developed turbulent flows and
are characterized by the Kolmogorov energy spectrum.
In the present work we are interested in the properties of
a nonequilibrium compressible fluid stirred by a Gauss-

t)gJ = V c,pVn+vpV —+ +op V V' —+fJ J 2J Vp J
n n 3 n

rl, n = —V. J, n =n+Bn.

ian random force similar to the force defined by (1) with

y & —2. In principle, this theory can be developed in

terms of a perturbation expansion in powers of Mach
number Map —v„;/c p, where v, , and c,p are the
characteristic velocity and sound speed, respectively.
When Map 0, the development of the theory is rela-
tively straightforward. In fully developed turbulence,
v, , cx: L (L is the linear dimension of the system) with

a & 0, so that v„, ~ in the infinite medium (L ~)
that we are interested in here. In this case the definition
of Mao given above is meaningless since Mao ~ and

one can erroneously expect the dynamics of the flow to
be dominated by shock waves. It is shown here that
when a &0 the effective sound speed also grows with

scale I oe k ' and the relevant renormalized Mach num-

ber reaches a finite fixed point. The renormalization of
the sound speed demonstrated below is the most striking,
although easily understandable, result of this work. This
eÃect is essential to understanding the physics of
compressible flows since the appearance of the dimen-

sional parameter c,o makes simple dimensional con-
siderations invalid.

Consider the momentum equation and the continuity
equation for compressible flow:

(2)

(3)

Here J is the momentum density and n is the fluid mass density, vp and pp
=—vp/3+crp are the kinematic shear and bulk

viscosities, respectively, and c,p =Bp/tin is the square of the sound velocity. The zero-mean Gaussian random stirring
force on the right-hand side of (2) is defined by its correlation function

(f (k, n)f, (k', n')) =(2') +'2Dpk -'8;, 8(k+k')8(n+ n') . (4)

Let us expand the momentum equation (2) in powers of bn/n and keep only low-order terms:

r), u, = —8; uiui [I —bn/n+ (bn/n) ] —c, rl;bn+ v8irliu, [I —bn/n+ (bn/n) ]+prl, rliui [I —bn/n+ (bn/n)-]+ f, .

Here u= J/n Equat—ion (.5) is closed when we express the density fluctuations bn through the momentum fluctuations
using (3). Finally, the Fourier-transformed momentum equation takes the form

go f d +'ql d"+'q2
G„'(k)u, (k) =f;+ 1,„,„(k,qi, q2)8(k+q +q1.)u (qi)u„(q2)

go p 8d+]q] Jd+ Iq2 Jd+
q+ ~, ~, , r;„,„,(k, qi, qp, q3)8(k+q)+q2+q3)u„, (ql)u„(qp)u, (q3),

6 " (2n) +' (2n) +' (2rr)
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where k =(k, p() and go is a formal expansion parameter which will be set equal to unity at the end of the calculation.
The tensorial Green's function

G~ =G&P((k)+G~~R((k) [R;,(k) =k, k(/k ]

is given by

G' =( —io(+ vok') ', Gii =[i(p(+c,'pk'/rp)+Xpk'] ' (Xp=—vo+pp),

The vertexes I (,(k, k~, kq) and I („,„,(k, k~, k~, k3) are defined by

(7)

I ( „(k,k~, kq) = —ik„,b(, —ik„b'(„,+ (8(„,vk +pk(k )+ (P(„vk'+pk(k„),
Np 601

k3& kgn k3( k1m k]m kgb
I (»n, (k, k), kp, k3) =ik»b(n

'

+ik»B(, +iknB(n,
'

+ikn6(, +ik, b(n +ik, 8(»
3 2 3 I 1 2

~ln Vk p k3s k lm p k2n
6(PPI Vk

N3 601 NP

, km &]m—8(, vk
N3 CO~ 071

kg„k3,—pk(k„,
Cop C03 N1 603 CO~ CO1

k 1» k3s kpn k I»
(10)

The problem (6)-(10) is formulated on the interval
~
k

~
& Ao, where Ap is the wave number beyond which dissipa-

tion takes place. The details of the scale-elimination procedure are essentially the same as in the case of an incompres-
sible fluid discussed in Refs. 2-4. We eliminate modes u (k) with wave vectors satisfying Ape & k &Ap from the
equations of motion for the equations for the slow modes u (k) with wave vectors from the interval k & Ape '. We
keep only the terms up to order gp and average over the fast modes u (k). The resulting equation for the slow modes
u (k) is

yd+I"
u; (k) =G;((k)f(+gpG;((k) I ( p( —k, k/2+q, k/2 —q)I,„,(k/2 —q, k/2+q, —k)

(2 )

x G„,(k/2 —
q )2Dp(q+ k/2) "G„,~ (q+ k/2) G„~( —

q
—k/2) G„(k)u, (k )

yd+1"
+go G;((k) I (mns (4

(2 )'+'
yd+ ( d+ I "

+ G„(k)„"
(2(r) +' (2(r) +'

go
2 m yd+(" yd+I"

—k, q, —q)2Dpk 'G ~(q-)G„~( —q)G„(k)u, (k)

I („,„(k,q~, qq)8(k+q ~ +qq) u (q ()u„(qq)

yd+1"

d+, I („,„,(k, q~ qq, q3)((((k+q~+q~+q3)u» (q~)un (q&)u, (q3), (11)
2(r '+'

where the symbol I means integration over the band Ape "&k &Ap. Equation (11) is defined on the domain
0 & k & Aoe ". The contributions involving j in the equation for the large-scale modes u (k) are associated with

corrections to viscosities and sound velocity for (2) defined on the domain 0 & k & Ap. Thus these terms take into ac-
count the role of the eliminated modes on the dynamics of the remaining modes u (k ).

First, let us consider the case of weak compressibility. In the incompressible case (divJ/n =0), the dynamics of ve-

locity fluctuations generated by the random force is characterized in the scaling regime by the characteristic frequency
p(=O(Dp( k '( ), e=4+y —d &0. Thus the maximum wave number at which various dissipation overcomes non-
linearity can be found from the relation Dp(3kd '( ~ vo so that o( .,„~DE kd '(. The frequency integration in f of
(11) should be carried out over the domain —p( „. „&co & ro,. „. It will be shown below that in the weakly compressible
limit c,pkd » co,. „ the correction to the propagator due to the potential component of the forcing function is O(Ma ) so
that the contributions O(kv(k)) can be neglected when Ma 0. In this limit the renormalized propagator is

Gj ' = —irp+v(k, G~~
' =i(p(+c, ~k /ro)+A. ,k, where v~ =vp[1+Adgp(e" —I)/e]. The dimensionless coupling con-

stant is go =gp(Dp/vpAo) ', and the renormalized viscosity is k,. —= v, +p, =A,p+ &„where
+ ~max dAd qhk~

2(vp+ pp)q '[(n+ c,'q '/n ) '+ (vp+ po) '-q'] '

When c,p ~ and
~ q ~

~ O(kd), N,„~Ma . In this case the energy spectrum of the flow is

E=E;„,+E„p=E;„,+O(Ma ),
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where

P„(k)
E,„,a:Tr Dok ' dm, E„~~Tr&0 2+ 2g 4 ' [' 0

R,, (k)
(co+c, k-'/co) +X k

(i4)

In deriving this result we did not consider the sound-speed renormalization since the frequency integration (12) enters
the corrections to the sound velocity and thus Bc, ~ Ma which does not change the estimate (13).

In the second limiting case of finite Ma we take co „, „/c, kd ~ and thus the frequency integration is to be carried
out over the domain —~ & co & ~. In this case, calculation of the integrals in (11) with the functions (7)-(10) leads
to corrections to the bare values of the viscosities v, p, and the speed of sound c, ,

Sv=AvM~(8, R)C, H. =AXMq(8, R)C, Bc, =Ac,'M3(8, R)C.

Here A =I/30m, C=g (e"—1)/e, and we introduce the dimensionless functions g =DoA, '/ v', 8=DPI/v, and
R=v A„/c, . The functions Mi, M2, and M3 are, in general, functions of e. When e 0 and r

Mi =3 ——. e+Rmi(8, R), My=4 —-„e+Rmp(8, R), M3=Rm3(8),

where the functions m ~, m2, and m3 are O(1) and R 0 (see below). In this case we find from (15) and (16)

v=1 22t. ' O' A ' X =l 62t. D A c =c

and the efl'ective coupling constant g =o(e) 0. This is the limit of incompressible flow. The renormalized Mach
number M (r) ~e'' c, o Do ' exp[2(1 —e/3)r] goes to zero on large scales (r ~) and the large-scale flow can be
described in the incompressible limit.

Another interesting case is e~ 4. The functions M evaluated for e=4 are

M) =1+2R8 '+
~ R ——'. 8 (8—1) R, M2= —. + '~ R8 '+

g R ——'. 8 '(8 —I)'R,

M3= ——„RO '+
4 R.

By variation of the dissipation cutoff A, =Aoe and using (18) we obtain the differential form of the recursion rela-
tions for the dimensionless functions g, 8, and R:

dg (r)/dr =eg —3AM~(8, R)g", dln8(r)/dr =Ag [M2(8,R) —M~(8, R)],

d lnR(r)/dr = —2+2AM
~
(8,R)g AM3(8, R)g—

(i9)

In the limit r ~ the renormalized nonlinear coupling parameter g goes to the fixed point g=(e/3AM~) '~ . In the vi-

cinity of this fixed point

d lnR(r)/dr = —2+ =, e —AM3(8, R)g (20)

with M3(8, R) &0. We can see that when e& 3 the dimensionless ratio R 0. When e& 3, R const &0. When
e=4 we find from (18) and (19) that 8 1.5, R 3.25, and

v=214 A, ', X=322 A, ', c, =384 A, (2i)
(2Ã) (2r) (2x)

The energy spectrum E(k) can be calculated in the lowest order in e from the equation u, =G„f,, where G;, is the re-
normalized Green's function (7),(8) evaluated with the functions v(k), l(k), c, (k) given by (21) with A, =k. If we

take into account only the terms up to g, the correlation function of velocity Auctuations corresponding to t. =4 is

P„(k) R„(I )
U„(k, co) = (2n) + '2Dok, +

co +v(k) k (co+c, k~/co)'+1I. (k) k
(22)

The energy spectrum is

E (k) =E;„,(k) +E'amp(k) ~ Do~ k

with the functions E;„,(k) and E„~(k) defined by for-
mulas (14) and E,„,/E„~=3. Terms higher order in

Sn/n neglected in the derivation of the equations of
motion (6) are all of higher order in the e expansion and

are omitted as irrelevant.
Two central predictions of the present theory are (1)

E,„,/E, , ~=const, and (2) the efl'ective sound velocity is

scale dependent, c, (L) a:L '~ . To test these predictions,
direct numerical simulations of the compressible, adia-
batic Navier-Stokes equations driven by the random
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FIG. 1. Variance of speed of sound in a randomly stirred
compressible turbulent flow as a function of length scale. The
Mach number in the computation Mao= 1; Reynolds number
based on Taylor microscale R& 20.

force (4) with y=d were performed. A spectral code
with 64 mesh points was used. The Reynolds number
based on the Taylor microscale was R& =20. Plots of the
energy spectra (E„~,E;„,) and the variance of the
speed of sound calculated as a function of length scale
are presented in Figs. 1 and 2. To analyze the speed of
sound c, (L), the expression c, =)p' ' =t)p/t)p ()'
=1.4) is averaged over boxes of linear dimension L. We
see that the sound velocity depends strongly on the
length scale according to the prediction of the present
theory although the relatively low Reynolds number of
the numerical experiment does not allow unambiguous
verification of the scaling exponent.

The effect of sound-speed modification due to tur-
bulent velocity fluctuations has been discussed by Chan-
drasekhar and Bonazzola et al. ' in the context of tur-
bulence in the Jeans instability of a self-gravitating gas.
Here we have investigated the effect of the spectrum of
turbulent velocity Auctuations on sound-speed renormal-

FIG. 2. Energy spectrum E(k) in compressible flow.

( ) z,.„( ) ~,.,; (---) ~,..„.

ization and derived for the first time a scale-dependent
sound velocity. Application of the present results to as-
trophysical problems will be the subject of future corn-
munications.
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