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%e study the evolution of global monopoles by means of numerical simulations, and find that the
monopoles obey a scaling solution in which there are a fixed number of monopoles in every horizon

volume. Monopoles which form at the grand unification scale can serve as seeds for galaxy and large-
scale structure formation.
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The idea that a spontaneous symmetry-breaking phase
transition in the early Universe can give rise to topologi-
cal defects has played a very important role in the devel-

opment of theories which attempt to explain the forma-
tion of galaxies and large-scale structure. Cosmic
strings, ' light domain walls, and global textures have
all been proposed as possible seeds for large-scale struc-
ture formation, and in this Letter we show that global
monopoles are also a viable and promising candidate. Of
all these candidates, only cosmic strings are actually pre-
dicted by simple grand unified theories (GUTs), but
since these GUTs now seem rather doubtful on both ex-
perimental and theoretical grounds, it is important to
consider the alternatives.

Global monopoles are the pointlike defects of a spon-
taneously broken non-Abelian global symmetrybu, t un-

like gauge (magnetic) monopoles, they do not resemble
particles. They carry an associated Goldstone-boson
field whose energy density falls off as 1/r, so the total
energy of the Goldstone field diverges as -r at large dis-
tances. In a realistic setting, this divergence will be cut
off at the distance to the nearest antimonopole which is a
large astrophysical scale. The evolution of a system of
global monopoles will be dominated by the dynamics of
this Goldstone-boson field which can become correlated
at large distances and provide an interesting spectrum of
density fluctuations.

In order to see if global monopoles could produce in-

teresting density fluctuations, it is necessary to under-
stand the dynamics of the Goldstone-boson field. In this

paper, we study the evolution of this Goldstone-boson
field with numerical simulations and show that global
monopoles evolve according to a scaling solution with a
fixed (small) number of monopoles per horizon volume

at all times. The scaling-solution number density is

many orders of magnitude smaller than the upper limits
derived by Hiscock, and we have explicitly demonstrat-
ed that the instability discussed by Goldhaber is not an
actual dynamical instability. (See Ref. 8 for a more
complete discussion of this point. )

For definiteness, we will consider the simplest theory
that can produce global monopoles: a scalar field with
an O(3) symmetry which is spontaneously broken to j +2(a/a)j 'tl'y +a'X(y' rl'—)y'=0, —(4)

O(2). The Lagrangian density is

~ —L g ~agp~a Lg(~a~a ~2)2

where p' is the O(3)-symmetric Higgs field. The ground
state of the theory has ~(p)~ =ri, but there are also states
with a nontrivial topological charge which are local mini-

ma of the energy functional. The topological charge is

given by

Q = „,e,tt„ttt'8„$P8,$ "dx"Adx", (2)xn'"" "
and the simplest Q=l solution is the spherically sym-
metric configuration p'=rif(r)r"', where r"' is a com-
ponent of the unit vector in the radial direction, and the
core function f(r) 1 as r ~. Outside the core, the
energy density of this global-monopole solution is dom-
inated by the gradient term

psrad
= 2' &0' V4

' = ri /r ' . (3)
Thus, the total energy of a monopole out to a radius R is

E,„=4zgR. In practice, the divergence for large R
will cut off at roughly the distance to the nearest an-
timonopole. Clearly, any global SO(3) rotation of this
solution is also a monopole solution of equal energy, but
a reflection of the Q=l solution changes it to an an-
timonopole (Q = —1) solution. For a single monopole,
these rotations have no physical significance because of
the global symmetry, but the relative orientation of mul-

tiple monopoles and/or antimonopoles can have physical
consequences. For instance, a M-M pair released from
rest will generally feel some transverse acceleration as
they approach each other to annihilate. This implies
that global monopoles should not be considered to be
simple particles. They are topologically nontrivial field
configurations whose dynamics is dominated by the be-
havior of the Goldstone-boson field at large distances.

Because a system of global monopoles is such a com-
plex system, the only tractable way to study their dy-
namics is through numerical simulations of the SO(3)-
symmetric Higgs field that admits the monopole solu-
tions. The equation of motion for the p' field in a
Friedmann-Robertson-Walker (FRW) spacetime is
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where a is the FRW scale factor, the dots denote deriva-
tives with respect to time, and the spatial derivatives are
with respect to comoving coordinates.

When one attempts to solve Eq. (4) numerically in an
expanding universe on a fixed comoving grid, the a
coefficient of the potential term presents a bit of a prob-
lem because it implies that the comoving size of the
monopole core must decrease as 1/a with time. In order
to resolve the monopole core properly throughout an
expanding-universe simulation, we must require that the
monopole radius be at least a few times the grid spacing
at the end of a run. The monopole radius will be a factor
of a (=r in the matter era) larger than this at the be-
ginning of the run. This reduces the effective dynamical
range of a simulation by a factor of a compared to the
dynamic range that would be available with a monopole
fixed size. More precisely, the useful length of a run will

be the cube root (in the matter era) or the square root
(in the radiation era) of the length of the run that can be
done in flat space.

One way around this problem that has been tried in
the case of domain walls is to modify the equation of
motion to keep the size of the topological defect fixed.
This has some very serious side eff'ects, however. In par-
ticular, it requires that the coefficient of the p' term in

Eq. (4) be modified. This will result in excess (unphysi-
cal) damping of the motion of the monopoles and excess
redshifting of radiation with the expansion.

A much better way of dealing with this difficulty in

the context of global monopoles (or global texture) is to
allow the monopoles to have zero size and evolve the p'
field according to the nonlinear-cr-model equation,

~'+2
a

(5)

with the constraint p =rl . This is just the limit of Eq.
(4) when k becomes large or alternatively when we are
interested in excitations whose energies and inverse

wavelengths are small compared to Jkrl. This is always
a good approximation in any astrophysical context. One
drawback of this nonlinear-o-model approach is that the
core of the monopole is not particularly well modeled.
The monopole energy density should scale as I/r 2 as we

approach the core, but this power law gets truncated nu-

merically at the scale of grid separation. Thus, our
discrete monopoles are too light on the scale of the grid
spacing, but since the energy of the monopole increases
linearly with r, these difficulties at small r have little
influence on the overall evolution. We have tested our
numerics by comparing runs of varying resolution which
started with an initial monopole-antimonopole pair, and
found that our code usually does fairly well (errors in

&520%) at a distance of only two grid spacings from
the monopole core. The errors get somewhat worse when
the monopole-antimonopole pair undergoes rather violent
acceleration just before they annihilate. But the errors
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are always small (&10%) at distances of more than
three grid spacings from the monopole path, and the er-
rors quickly dissipate after the annihilation.

Another potential difficulty in evolving Eq. (5) numer-
ically is that p' will necessarily have large spatial varia-
tions in the vicinity of a monopole. The large gradients
can cause large accelerations of p' which will make the
field change by a large amount in a single time step.
This can cause difficulties in applying the p =rl con-
straint and lead to large errors that show up as (among
other things) large violations of energy conservation.
Fortunately, this problem is easily resolved by taking
small time steps. We have found that for a flat-space
run for a time interval of 64hx, energy conservation is
violated by 17% for Ar/hx =0.2, 2.1% for hr/dx =0.1,
and 0.24% for hr/hx=0. 05. (For comparison, the 3D
Courant-stability criterion requires that Ar/Ax ( I/J3. )
We have used hr/Ax =0.1 or 0.08 for almost all of our
production runs.

We used two difl'erent types of initial conditions in our
study of monopole evolution: randomly oriented fields
and M-M pairs initially at rest. We have also numeri-
cally solved for the ground-state configuration of a M-M
pair when the positions of the poles were held fixed with
a 2D code. We found that the gradient energy of the
field between the poles confined itself to a narrow
"string" with a width proportional to the grid spacing.
This seems to confirm the suggestions by Barriola and
Vilenkins and Turok that the field between a monopole
and a antimonopole might collapse to a very thin
"string. " However, when we ran our dynamical simula-
tions without artificially fixing the positions of the mono-
pole and antimonopole, we found that they would ac-
celerate and annihilate before the field between them
could collapse to a string. As the M-M pair was ac-
celerating toward each other, the fields were significantly
distorted from the stationary (or Lorentz-boosted)
monopole configurations, but the fields more closely
resembled the stationary monopole or antimonopole solu-
tions than a M-M pair separated by a U(1) string.
Thus, it is reasonable to conclude that these stringlike
configurations do not occur in realistic situations.

The initial conditions for the "randomly oriented
fields" configuration were chosen by randomly assigning
the field direction at every fourth grid point and then us-
ing a four-point cubic interpolation scheme for the inter-
mediate points (our boundary conditions were periodic).
After the fields at the intermediate points are assigned,
their amplitudes are normalized to meet the condition
p2 r12

Figure 1 shows the configuration of the field in a par-
tial slice through one of our matter-era simulations at
expansion factors of (a) a=2.25, (b) a=9, and (c)
a =49 from the start of the run. The horizon grew from
0.125Lb,„ to 0.875Lb,„ from the start of the run until the
time when the final picture is shown. (Lb,„ is the size of
the smallest dimension of the computational box. ) Fig-
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ure 1(c) is somewhat atypical in that the slice was

chosen so that a few monopoles would be apparent.
About half of the similarly sized slices at t=0.875Lb,„
=7to do not show any evidence of monopoles. Only the
x and y components of the field are shown, so the ampli-
tude of the field appears small when the z component is
large (recall that p

—= rl ).
The evolution of the global rnonopoles shown in Fig. 1

can be explained quite simply. On scales larger than the
horizon the field is completely uncorrelated, so if we ex-
amine the field on the surface of a sphere with a radius
larger than the horizon, we will find that there is a high
probability that the sphere will contain a monopole or an
antimonopole. As the Universe expands, we expect that
many M-M pairs will annihilate and the field will be-
come correlated on scales close to the horizon size.
Thus, we expect of order 1 monopole or antimonopole
per horizon volume at all times. Figure 2 shows the evo-
lution of the comoving monopole (plus antimonopole)
density N, „multiplied by the horizon volume t for
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FIG. 1. Part of a slice through a 96x64 matter-era simula-
tion at (a) t=0.1875Lb,„=1.5tp, (b) t=0.375L b3t anpd

(c) t=0.875Lb,„=7tp, where tp is the initial conformal time
and Lb,„ is the comoving box size. The slice shown contains
65 &41 grid points.
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FIG. 2. .The number of global monopoles plus antipoles per
horizon volume, 1V,„t', is plotted vs time for (a) several
radiation-era runs and (b) several matter-era runs.
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several different runs in (a) the radiation era and (b) the
matter era. The heavy solid curves with error bars are
the average of three 64 simulations and one 96x64
simulation (with statistical error bars). The heavy
dashed curves represent 96 simulations, and the light
dashed curves are runs that started with diflerent initial

monopole densities. These latter curves demonstrate
that the system quickly relaxes toward the scaling densi-

ty if the initial state has a higher or lower density. Un-

physical effects of the periodic boundary conditions can
enter at times as early as ~ =406,x = so+ 32hx for the
64 runs and r =56hx = ro+48hx for the 96 runs be-
cause this is the first time in which waves emitted from
the same point traveling in opposite directions can meet.
(We expect these efl'ects to become important somewhat
later than this, however. ) Our values for the comoving
monopole density at scaling are N, „=(3.5+'1. 5)/r in

the radiation era and N, „=(4.0+ 1.5)/r in the matter
era.

A proper treatment of the density fluctuations from

global monopoles will require adding gravity to our
simulations, and so our present understanding of the
density fluctuations from monopoles is rather specula-
tive. A rough estimate of the amplitude of the fluctua-
tions can be obtained by multiplying the typical energy
of a monopole (evaluated at R = 1/N~i&&„) by N, „and
dividing by the total matter density. This yields 8p/p
=100Gr) for the matter era which suggests that a
GUT-scale value ri-10' GeV would provide fluctua-
tions of the right amplitude. Since the gravitational field

of a static monopole exerts no force on nonrelativistic
matter, it seems reasonable that the dominant fluctua-
tions will come from M-M pairs accelerating toward
each other in order to annihilate. Since the monopoles
will generally move at relativistic (even highly relativis-
tic) speeds, the gravitational acceleration on the sur-

rounding matter will be large. If the accelerating mono-

poles closely resemble Lorentz-boosted versions of the
stationary solution, then we would expect that the densi-

ty perturbations would be linear structures in analogy to
the sheetlike "wakes" predicted by the cosmic-string
model. ' Our numerical simulations show, however, that
the monopoles become significantly distorted before they
annihilate, " but it might still be reasonable to expect

filamentlike perturbations anyway. The spectrum of
fluctuations should be broadly of the Harrison-Zeldovich
form (like cosmic strings or global textures), but with

significant non-Gaussian features on large scales. The
apparent filamentlike nature of the perturbations pro-
vides an advantage over global texture because it may
provide a way to generate correlations on the scale re-

quired to fit Abell-cluster observations. It might seem
that cosmic strings would be a more attractive scenario
for structure formation because they naturally provide
the sheetlike perturbations that seem to be observed. '

However, global monopoles have the advantage that
their coherence length is larger than the coherence
length of strings so that the dominant fluctuations which
occur near equal matter and radiation density will be at
a somewhat larger scale. We will address these issues
more fully in a subsequent work which will contain cal-
culations of the gravitational field produced by evolving

global monopoles.
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