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When cosmic strings cross and intercommute, four kinks are created. We calculate the linear density
of these kinks, K(¢), in an expanding universe. After a period of rapid initial growth, K(¢) approaches
the scaling K(¢) ¢t ~'. However, due to the slow decay of kinks, the kink density is orders of magnitude
larger than one might expect. Thus, we predict that a single horizon-length segment should have == 10
kinks in the radiation-dominated era. This may explain the lack of scaling behavior in the formation of

loops observed in numerical simulations.

PACS numbers: 98.80.Cq

In this paper, we consider the formation of kinks on a
network of cosmic strings in an expanding, radiation-
dominated universe.! A kink is a discontinuity in the
derivative of the tangent vector along the string— the
direction of the string changes abruptly at such a point.>
Of course, the discontinuity is not present on the smallest
length scales, and if 7n is the characteristic radius of the
core of the string (typically 10 ~?° cm), then the kink has
a comparable radius. One can show that these kinks
move along the characteristics of the wave equation (at
the speed of light) so that if the transverse velocity of the
string is v, then the longitudinal velocity of the kink is
a-vd)'2

The initial string network is formed with no kinks.
During the subsequent evolution of the string network,
kinks are created by the intercommutation (i.e., crossing
and rejoining) of two strings (or two distant parts of the
same string). Immediately after an intercommutation,
the string segments lying on either side of the crossing
point will have different velocities, and thus a kink is
present. Since a kink moves away in both directions
from the point of formation, each of the intercommuted
strings acquires two kinks, and the total number of kinks
on the network is increased by four.

In order to estimate the number of kinks on the
infinite-string network, we adopt the “one-scale’’ model
of cosmic-string evolution.! This model has a number
of shortcomings, but is a useful and simple way to under-
stand the different processes that take place. The ex-
panding universe is described by a radiation-dominated
homogeneous and isotropic cosmology. For simplicity we
assume that the metric is spatially flat,

ds’=—dt*+a*(t)(dx*+dy*+dz?), (1)
with a radiation-dominated scale factor
a(t)=\/t/t0. )
The horizon radius in this model is given by
t
= =1y "=
10 =a® [a= @dr' =21 3)

We will count the production of kinks within a fixed

comoving cube x,y,z € [0,L] of comoving volume L3.
Equivalently, one may identify the opposite faces of the
cube to make a three-torus of comoving volume L 3.
(This choice is correct because the string network on
large scales is fixed with respect to comoving coordinates;
further discussion may be found in Ref. 3.)

At time ¢, the physical volume of the spatial section is
given by V(¢)=a*(t)L> and hence the number of
horizon-sized volumes present at time ¢ is given by

Nhorizon (1) =V (£)/13(t) =L3(11¢) =2 . 4)

The reader will note that we have dropped numerical
factors of order unity in this calculation. We do this be-
cause the one-scale model is already fairly contrived, and
cannot be considered as anything other than a rough ap-
proximation.

The energy density in infinite strings is'

peo=vut/t>=vut 72, (5)

where u is the mass per unit length of the string, and v is
the average number of horizon-length segments of
infinite string passing through one horizon volume (v is
dimensionless). Note that here, and in the rest of this
paper, an “infinite” string is one whose length is greater
than the horizon length /(z). Anything else is called a
“loop.”

We will assume that each infinite-string intercommu-
tation cuts one loop of length at off the infinite-string
network. In this one-scale model, loops are formed only
by being ““cut off”’ the infinite-string network, and their
size at the time of formation is a constant fraction a of
the horizon length.

To calculate the number of kinks created per unit
time, we need to know how many crossings are taking
place. Let Njop(2) denote the number of loops formed
by intercommutation in the fixed comoving volume L3
between the time that the string network was formed and
time 7. The rate of loop formation dNe0p/dt is related to
the energy density in long strings by

AV ()pe.] dNoop
—— =—uat——.

dt dt )
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(We assume here that the average square velocity of the
infinite-string network is ¥, so that the energy of the
string network is conserved. This is a good approxima-
tion; a more precise formulation may be found in Appen-
dix A of Ref. 4.) One thus finds a rate of loop formation
%Og =E‘;7Nhorizon(t) . (7)
Note that we are assuming a unit intercommuting proba-
bility for the strings.

In order to count the number of kinks on the infinite-
string network, we need to know how rapidly kinks are
added to and removed from these strings. For each loop
formed, four kinks are created. Two of these kinks are
added to the infinite-string network, and two are added
to the loop which is formed.> Then

dncreated =) leoop =
dt dt

where n¢reaed denotes the number of kinks added to the
infinite-string network in our fixed comoving volume L 3.

The infinite-string network loses kinks in two ways.
Loops that are cut off the network carry kinks away with
them. The remaining kinks are smoothed (damped)
away by the stretching of the string due to the expansion
of the universe and by the loss of energy due to the emis-
sion of gravitational radiation by the kinks. We first
consider the case in which no smoothing takes place,
after which we calculate the effects of smoothing.

If K(¢) denotes the number of kinks per unit (physi-
cal) length on the infinite strings, then each loop carries
away atK (¢) kinks. Thus,

LNhorizon(t) ) (8)
at

dnremoved _

dNioop _ v ‘
dt (ZIK(I) dl 2 K(I)Nhonzon(’) (9)

gives the number of kinks removed per unit time from
th;e infinite-string network in the fixed comoving volume
L-.

By subtracting the number of kinks carried off the
infinite strings by loop formation from the number added
by intercommutings, one obtains the total number of
kinks on the infinite-string network. This is related to
the linear kink density K(z) by

K@) = (”crcatcd - nrcmoved)/L o 5 (10)

where L(?) is the total length of infinite string in our
fixed comoving volume:

Lo(t) =V(1)poo/u =L>vtqg ¥ =172, (11)
By differentiating L. times Eq. (10), and using Egs. (8)

and (9), one obtains a differential equation for K (¢):

d =N, . v _v
di [L.(1)K()] _Nhonzon(t) [at 2K(l) . (12)

By substituting in the functional forms of L(t) and
Nhorizon(2) given in Eqgs. (4) and (11) one obtains the fol-
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lowing differential equation for the kink density K (¢):

A1 12K ()] = 32 [i—@ (13)

dt 2

This differential equation is easily solved by letting y(z)
=1 72K ().

The general solution to the equation of motion for
K (1) is given by

K@) =@1/ar)(gr —1) (14)

(where q is a free parameter). Imagine that the string
network is formed with no kinks at time 7orm, so K(z)
obeys the boundary condition K (¢fo;m) =0. The solution
is then

K@) =0/at)t/tiom—1) . (15)

The important point here is that the number of kinks per
unit length on the infinite strings is not proportional to
the inverse of the horizon length; it does not scale. The
density K(z) grows more rapidly than it would for a scal-
ing solution, since a segment of infinite string passing
across a given viewer’s horizon carries a number of kinks
which grows as tK(t) « (1/a)t/tierm. In addition, the
loops of length at being cut off the infinite-string net-
work have a number of kinks which grows in the same
way. The nonscaling behavior of the kink density in this
case means that the string network does not “forget” its
initial conditions [since at late times K (¢) depends upon
tiorm). This type of behavior was predicted by Bouchet
and Bennett,® who give a qualitative argument showing
that under these conditions the linear density of kinks
cannot decrease.

We now consider the effects of kink decay (damping).
At least two mechanisms contribute to this: stretching
and gravitational radiation. We will see that in a
radiation-dominated universe, the latter effect dominates
kink decay.

Stretching occurs because in an expanding universe,
the angle of a kink is not constant. It is shown in Ref. 7
that the angle of a “typical” kink decays proportionally
to a power law:

a(t) 2D —1 P wd—1/2
9(t)=9k a(lk) ] =0 [ZJ
-1/8
=06 [L] . (16)
Tk

In this formula, the kink is formed with initial angle 6,
at time 7, and (v2) = 0.43 is the mean velocity squared
of the string network in the radiation-dominated era.
The constant § = 14 determines the decay lifetime of a
kink due to stretching; a kink formed at time i, disap-
pears at time ?death =€t birth.

The effects of kink decay due to emission of gravita-
tional radiation are considered in Refs. 8 and 9, and are
similar to the radiative decay of a small loop. Reference
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1 shows that a small loop of cosmic string loses energy at
a rate £E=—yGu?. Thus, a loop of length /(tyirn) will
disappear at time fgeath = (1/yGu ) tyirtn, where y =50 is
a dimensionless parameter. Reference 8 shows that
kinks on a cosmic string decay on approximately the
same time scale. Taking Gu=10"% one finds that
6=10 due to gravitational radiation provides a faster
kink decay mechanism than stretching.

This decay of kinks prevents tK(¢) from growing for-
ever. A simple model permits us to take this effect into
account. For convenience, we adopt logarithmic time
coordinates u,s =In(z/ts), where, as before, t; denotes
the time of formation of the string network. Let
n(u,s)ds denote the total number of kinks present at
(logarithmic) time u which were formed between (loga-
rithmic) times s and s +ds in our fixed comoving volume
L3. Since ds =t ~'dt, the rate of kink formation (8) per
logarithmic time interval is

n(s,s) =vL3a " 'tg 3232 ~3/2, a7)

The rate of kink loss to loops is given by (9),
in(u,s)='—{—n(u,s). (18)
Oou

We want to know the function n(u,s) in the upper half
quadrant 0<s<wu. The first equation determines
n(u,s) along the diagonal where u =s, and one can in-
tegrate (18) to obtain the solution

n(u,s)=vLa " 'tg 232 ~57u2, (19)

For simplicity, we assume that kinks formed at time #
disappear at time tre®=2x10%. The total number of
kinks present within the fixed comoving volume L* at
(logarithmic) time u is then

B B VL V) —u/Zf
n(u)=vL’a " 'tqg %1, % max(0,u — )

u

e Sds. (20)

The lower limit on the integral is the larger of O and
u — &, because the first kinks (formed at # =0) begin to
decay at u=4. The kink density on infinite strings is
now obtained as K(u) =n(u)/L.. Changing back to
physical time, one obtains

(1/at)@t/ty—1) for t <tse’, @n

K(t)={(1/at)(e‘5—l) for tre®<1. 22)

This function is shown in Fig. 1. For ¢ <te’, the kink
density agrees with the earlier result (15); it rises rapidly
until the time at which the first kinks begin to decay.
After that time it begins to scale, K(z) &<z ~', with the
total number of kinks on an infinite-string segment pass-
ing through the horizon equal to tK(¢) =a 'e®. For
typical values a=0.01 the resulting kink density is
much higher than one might expect—about 10° kinks
should be visible on a single string segment passing
through the horizon. (Naively, one would only expect
~1 kink.)

t; t; e’

— (o)

Log K(t)

K=(ot)'e® —

Logt

FIG. 1. The linear density of kinks K(z) as a function of
time. The density rises rapidly after the time ¢, when the
string network forms. The density reaches scaling K(¢) <t ~!
after the first kinks start to decay at time tse’. At late times,
the number of kinks on a string segment stretching across the
horizon is about a ~'e®=~=2x10% ~!, which is much larger
than one might expect.

The calculation of the kink density is carried out in
greater detail in Ref. 4, where the matter-dominated era
is also treated. This case differs from the radiation-
dominated one. In the radiation-dominated era, the
dominant kink decay mechanism is through the emission
of gravitational radiation. The faster decay parameter
6= 10 then predicts about 10° kinks visible on a long
string segment. In the matter-dominated era, Ref. 4
shows that the stretching mechanism dominates the kink
decay, and that = 5x 103 kinks will be visible on a single
string segment passing through the horizon.

In current numerical simulations,®'%"'2 it is clear that
small-scale structure is being formed, and this growth of
the kink density may suggest the reason why. (Different
explanations for this structure formation have also been
given, for example, in Refs. 13-16.) In fact, the simula-
tions do not run nearly long enough to reach the scaling
behavior in the kink density. A typical radiation-
dominated-era simulation runs for ¢, <t < 25ts, and has
a <0.01, in which case scaling of the kink density would
not occur until 2x10%, (if the simulation includes the
effects of gravitational radiation backreaction) or
2x10% (if the effects of backreaction are neglected).
Thus, in the simulations, the kink density is predicted to
rise rapidly for the duration of the simulation.

The large kink density provides an extremely small
length scale K ~'(¢) on the string network (i.e., 10 ¢ of
the horizon scale). One can speculate about two possible
consequences of this. First, due to the kinky structure,
the loops cut off the long strings may be much smaller
than naively expected. Because of energy conservation
[Eq. (6)], the probability of self-intersection and of loop
formation would then increase. This speculation is sup-
ported by numerical simulations’ which show that the
rate of loep formation is enhanced by the presence of
small-scale structure, and that the loop energy produc-
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tion rate is unchanged. If this is so, the true value of a
may be smaller than the value that we use, but the main
formulas should still apply. Second, the loops that are
cut off the infinite string will have the same high kink
density, which may lead to further fragmentation. These
types of effects would increase the number of small loops
formed, and weaken the existing bounds on Gu that
come from timing measurements of the binary pul-
sar.'01117-23 Other effects of kinky strings (which may
be very important for galaxy formation) are discussed in
Ref. 24.
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