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Phase Diagram for the Collective Behavior of Limit-Cycle Oscillators
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We analyze a large dynamical system of limit-cycle oscillators with mean-field coupling and randomly
distributed natural frequencies. Depending on the choice of coupling strength and the spread of natural
frequencies, the system exhibits frequency locking, amplitude death, and incoherence, as well as novel
unsteady behavior characterized by periodic, quasiperiodic, or chaotic evolution of the system s order pa-
rameter. The phase boundaries between several of these states are obtained analytically.

PACS numbers: 05.45.+b, 87.10.+e

Coupled nonlinear oscillators are of interest in both
biology' and physics. ' This Letter was motivated by
a remarkable biological phenomenon known as collective
synchronization. Populations of biological oscillators
can spontaneously synchronize to a common frequency,
even if there is a distribution of natural frequencies
across the population. Examples include swarms of
fireflies that flash in synchrony, crickets that chirp in un-

ison, synchronous firing of cardiac pacemaker cells, and

groups of women whose menstrual cycles become syn-
chronized.

The onset of synchronization is like a phase transition:
When the coupling between the oscillators exceeds a crit-
ical value, the system spontaneously changes from an in-

coherent to a synchronized state. This novel cooperative
phenomenon has recently attracted a great deal of atten-
tion. ' The essentials of the problem are (i) the micro-
scopic subunits are limit-cycle oscillators, and (ii) the
frequencies of the oscillators are distributed across the
population. To simplify the analysis, most (though not
all ' ) authors have considered mean-field models in

which each oscillator is coupled equally to all the oth-
ers. ' ' " Previous analyses have been restricted to the
cases of strong coupling ' or very weak coupling. '
In both cases, the system was found to evolve to a statist-
ical steady state, characterized by a stationary number
density in phase space and a constant order parameter.

In this Letter we describe several new forms of collec-
tive behavior for limit-cycle oscillators, all of which
occur for intermediate values of the coupling strength.
These new kinds of behavior are unsteady, and include
periodic, quasiperiodic, and chaotic motion of the order
parameter. We also derive analytical expressions for the
boundaries of the steady regions in the phase diagram.
These analytical results generalize earlier results ob-
tained in the limits of weak or strong coupling.

We consider a model ' of linearly coupled oscilla-
tors, each near a Hopf bifurcation:

for j=1, . . . , N. Here z~(t) is the position of the jth os-
cillator in the complex plane, K~O is the coupling

strength, and the frequencies tal are randomly chosen
from a symmetric unimodal distribution g(ta) whose
width is characterized by a parameter y. We assume
that the mean of g(ta) is zero, by using a rotating frame
if necessary. In the absence of coupling, each oscillator
has a stable circular limit cycle ~zj ~

=1. Our goal is to
determine the long-term behavior of (1) for large N, as a
function of K and y.

We first describe our numerical simulations. Equation
(1) was integrated numerically using 800 oscillators.
The frequencies ta~ were chosen to be evenly spaced in
the interval [—y, y], corresponding to a uniform density
g(ta) = I/2y for ~ta~ ( y, and g(ta) =0 otherwise. Typi-
cally the long-term behavior of the system was indepen-
dent of the initial conditions, except for two very thin
hysteretic regions in EC- y space; these are discussed
below.

The results are conveniently described in terms of a
complex order parameter '

N

Re"=—g z, ,N)-i
whose amplitude R measures the degree of collective
synchronization. Figure 1 plots the evolution of R for in-
creasing values of y at fixed K. For small y the system
spontaneously synchronizes [Fig. 1(a)]. As y is in-
creased, R(t) exhibits large oscillations [Fig. 1(b)], and
then irregular oscillations [Fig. 1(c)]. For sufficiently
large y, the system approaches an incoherent state with
R near 0 and all the oscillators running at their natural
frequencies [Fig. 1(d)].

Figure 2(a) plots the long-term behavior of the system
as a function of K and y. In order of increasing com-
plexity, the different types of behavior are the following.
Amplitude death: Each oscillator has zero amplitude;
the fixed point z~ =0 is stable. Locking: There is a
stable fixed point of (1) with R ) 0, as in Fig. 1(a). The
phase p of (2) is arbitrary because Eq. (1) is rotationally
symmetric. In the original frame where the mean of
g(to) is not zero, this solution corresponds to frequency
locking, with the oscillators rotating rigidly about the
origin at the mean frequency. Incoherence: Each oscil-
lator moves at its natural frequency along a common cir-

1990 The American Physical Society l 701



VOLUME 6S, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OcTDBER 1990

0.6

0.4

0.2

(a)

0.6

0.4

] o.z

1.0 l-

0.5 }

(a)

Locklrlg /,

+~e

Incoherence

I

I

Death

0.2

(') - o.a-

06
04.
0.2-

1.0

0 ~ I ~ . I 0 I . i . I . I

0 20 40 60 80 100 0 20 40 60 80 100

tl Ale time

FIG. l. Evolution of the amplitude R of the order parame-
ter (2). Equation (1) was integrated for K =0.8 with the oscil-
lators starting from random initial conditions in the square
lxl ~ 1, lyl~ l. (a) y=0.6, (b) y=0.8, (c) y=1.0, and (d)
y =1.2.

1.0

cle of radius (1 —K) 't centered on the origin. R(t) has
a constant value R=0. Strictly speaking, this solution
exists only for infinite N; for large N the fluctuations in

R(t) are O(N 't ), as in Fig. 1(d).
In the death, locking, and incoherent regions, R(t) al-

ways approaches a constant as t ~. Such steady be-
havior has been reported previously. The remaining
region of the phase diagram is novel; it corresponds to
unsteady motion of the order parameter.

Figure 2(b) shows the upper portion of the unsteady
region. An enormous variety of behavior was uncovered
in our numerical simulations; only the largest regions are
shown in Fig. 2(b). Hopf oscillations: When K) 1 the
locked state loses stability via a Hopf bifurcation, lead-
ing to small quasisinusoidal oscillations about the locked
state. Large oscil!ations: When K(1, the locked state
undergoes a saddle-node bifurcation to large-amplitude
oscillations, in which the order parameter (2) crosses
through the origin along a line of constant p, and hence
R(t) oscillates between 0 and large values, as in Fig.
1(b). Quasiperiodicity: The large oscillations lose sta-
bility via Hopf bifurcations, which add a second and
then a third frequency to the system. Chaos: R(t) is ir-
regular [Fig. 1(c)] as is the phase p(t). Numerical evi-

dence suggests that this irregular motion is chaotic.
First, there is a positive Lyapunov exponent: two slightly
different initial conditions diverge exponentially fast. In
contrast, this exponential divergence was not observed in

the incoherent or quasiperiodic regions. Second, the
time series of the real part of (2) has a broadband power
spectrum with a roughly 1/f structure, whereas in the in-

coherent region, the power spectrum is flat for ltol ( y
and then falls off' rapidly. For K near 1, the transition
between chaos and incoherence is subcritical; there is a
thin hysteresis region of width h, y=0.01 in which both

lodlcltg

1.2 1.8

FIG. 2. (a) Phase diagram for Eq. (1) with frequencies uni-

formly distributed on [—y, yl. Locking-unsteady boundary
determined numerically; other boundaries determined analyti-
cally. (b) Detail of the unsteady region in (a). All boundaries
obtained numerically.

8 = co —(KR/r ) sin 8,
r'=r(1 —K —r )+KRcos8,

(3a)

(3b)

where the oscillators are now indexed by m instead of J.
Thus, a fixed point satisfies to =(KR/r) sin8, r(r +K
—1) =KRcos8, and hence

(KRsin8) =to (1 —K+tocot8) .

chaos and incoherence are locally stable. There is a
second very thin hysteretic region (near K =0.5,
y=0.43, of width by=0.001) in which a periodic at-
tractor coexists with the locked state. As y increases
through this region the system follows a period-doubling
route to chaos.

We now outline our analytical calculations of the
boundaries of the steady regions corresponding to ampli-
tude death, locking, and incoherence. All calculations
are for N ~. The boundaries for both amplitude
death and locking can be calculated at the same time be-

cause both states correspond to fixed points of Eq. (1).
One can show that amplitude death is the only fixed

point with R =0; henceforth we suppose R )0. By a ro-

tation of coordinates, we may set &=0 in (2). Let
z, =ri exp(i8, ) Then (1) b. ecomes
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Fixed points must also satisfy the self-consistency equa-
tion

zK + K+ 7

4 6 36

Z2 K' +O(K').
64

Equation (7) generalizes the result y=xK/4 obtained for
phase models, which correspond to the limit K 0 in

Eq. (1). Although Eq. (7) was derived for K«1, it

agrees with the numerically determined boundary to
within 2%, for K as large as 0.8. For K=1 and uniform

g(co), one can prove" that the boundary passes through
the point K=1, y=z/3. For K) 1, numerics indicate
that the locked state is unique, and so a saddle-node bi-

furcation is no longer possible; instead locking is lost by

R = rcos8g(cu)dao.

To determine the stability of a fixed point in the
infinite-1V limit, we must consider both the discrete and
the continuous spectrum of the linearization of (1). We
find" the following pair of equations for the discrete
spectrum:

A+2r +K 1 ~Re(z )
( ) (~ (7+2r +K —1) +co —r

where z =re' is the fixed point and X is an eigenvalue.
The plus and minus signs in (6) arise from collective
modes associated with angular and radial motions of the
order parameter, respectively. When the plus sign is

chosen, Eq. (6) is satisfied identically by X= this

refiects the rotational symmetry of the original system

(1). The continuous spectrum' " is given by X =1 —K
—2r2~ (r —co ) 'f2, and is associated with perturba-
tions of a single oscillator while the others remain fixed.
Thus, a fixed point may lose stability in three qualitative-

ly different ways.
The boundary of the amplitude-death region may now

be found by setting z =r =0. Then (6) has at most one

solution X and it is necessarily real. ' Stability is lost

when A, =0; for a uniform g(ro) the integral in (6) then

yields tan(y/K) =y/(K —1). Equivalent results for this

part of the death boundary have been found previous-

ly. The continuous spectrum is A. =1 —K+im, where

co runs over the support of g(ro). Hence K) 1 is also
needed for stability. The death region has a corner at
the point K=1, y=z/2. The spectrum at this point is

extremely degenerate: Both the continuous and the
discrete spectra lie exactly on the imaginary axis. This
coincidence accounts for the peculiar simultaneous inter-

section of curves at the corner in Fig. 2(b).
Now consider the boundary between the locked and

unsteady regions. For K&1 and for uniform g(ro),
numerics show that locking is lost by a saddle-node bi-

furcation. This allows us to characterize the boundary
analytically —we set X =0 in (6) and solve Eqs. (4)-(6)
simultaneously. The result" for small K is

a Hopf bifurcation. This part of the boundary is hard to
find analytically because one must solve Eqs. (4)-(6)
simultaneously with Rel. =0 and Imk to be determined.

Finally, to calculate the boundary between the in-
coherent and unsteady regions, we determine where
another solution branches off the incoherent solution.
Specifically, we seek a solution for which (2) is small
and time independent A. s before, we may set &=0.
Then we regard R as a small constant forcing term in

(3) and solve for the motion of all the oscillators to
O(R). These motions imply a value for R which must be
consistent with that assumed. For such a solution the
population of oscillators splits into "locked" and "drift-
ing" subpopulations. ' The self-consistency condition is

R =Ri~k+Rq„f, . The boundary of the incoherent region
is obtained by imposing self-consistency in the limit

R 0.
To find RI k, let e=KR «1 and a =1 —K. Since all

the oscillators satisfy r =a+0(e), Eq. (3a) shows that
the oscillators with co ( ro, =e/a+ O(e ) will lock. Then
f0=(e/a) sin8+O(e ) and so

rcos8g(ro)dfo =e(x/2)g(0)+O(e ) .R lock

To calculate RQ, ;ft, consider an oscillator of frequency
Then Eq. (3) has a stable limit-cycle solution,

by the Poincare-Bendixson theorem. By perturbing
around the e 0 solution r(t) =a, 8(f) =aif+80, we
find ' that the path of the limit cycle is r =a+e(p sin8
+Bcos8)+O(e ), where A =ai/(co +4a ) and
B=2a /(ro +4a"). To ensure that Rg, ;ft is time in-
dependent, as required by self-consistency, we require
that the oscillators of frequency ro form a stationary dis-
tribution along their limit cycle. Then one can show"
that these oscillators contribute eB/2+O(e ) to R, and
hence

g'"" +O(. ).4 —oo ~2+ 4g 4

By self-consistency, R =Ri k+Rp„«, and hence a par-
tially synchronized solution branches off the incoherent
solution along the curve

1 frg(0) + ( )
' g(fo)ck0" m'+4(1 —K)' (8)

In the limit K 0, Eq. (8) reduces to the result
K=2/ng(0) obtained for phase models. ' For the uni-

form distribution, Eq. (8) yields tan(2y/K) =2(K —1)/
y, which agrees well with the boundary found numerical-
ly. As K 1, Eq. (8) shows that the boundary ends at

y =+/2, the corner of the death region.
The mean-field model (1) is one of the simplest possi-

ble models of coupled nonlinear oscillators, yet it exhibits
rich collective behavior. In particular, the long-term be-
havior of the order parameter can be periodic, quasi-
periodic, or chaotic. Such unsteady behavior has not
been seen in previous mean-field models of coupled oscil-
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lators, ' ' but these models were composed of phase-
only oscillators. Thus the amplitude degrees of freedom
in Eq. (I) may be essential to the unsteady behavior
found here.

It is intriguing that oscillators with only two degrees of
freedom can cause unsteady behavior. This result per-
sists if g(ro) is changed to a Gaussian, Lorentzian, or tri-
angle distribution. ' ' Beyond its importance for oscillator
synchronization, the phenomenon of unsteadiness may
have wider implications for the statistical mechanics of
nonequilibrium systems. In future studies, one should

try to go beyond mean-field theory to consider large sys-
tems of limit-cycle oscillators with short-range coupling,
and perhaps to extend renormalization-group meth-
ods ' to this new class of cooperative systems.
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