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Gravitational Couplings of the Inflaton in Extended Inflation

Richard Holman, ' Edward W. Kolb, and Yun Wang '

"'Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
' 'NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 605IO

and Department of Astronomy and Astrophysics and Enrico Fermi Institute, The University of Chicago, Chicagoll, linois 60637
(Received 12 March 1990)

We discuss a new extended-inflationary scenario evading the difficulties of the original model. Our
model can thermalize the energy in the bubble walls by the necessary epoch, and establish a Robertson-
Walker frame in the bubble clusters. The essential new ingredient in our model is the observation that
the coupling of inflaton to the Jordan-Brans-Dicke field is expected to be different from that of visible
matter.

PACS numbers: 98.80.Cq, 04.50.+h

Recently, La and Steinhardt' proposed a new in-
flationary-universe scenario, dubbed extended inflation,
which allows the old inflation model of Guth to succeed
in percolating the true vacuum phase. It is based upon a
Jordan-Brans-Dicke (JBD) theory coupled to an
inflaton field, whose potential admits both a metastable
state and a true ground state, separated by a potential
barrier. Unfortunately, the original extended-inflation
scenario suA'ered from some serious flaws, as pointed out
by Weinberg and by La, Steinhardt, and Bertschinger.
The problems found were twofold: While the true vacu-
um phase did indeed percolate, there were still problems
of too many large bubbles of the new phase whose interi-
ors could not be thermalized in time. There was also a
problem with establishing a common Robertson-Walker
frame in the various bubble clusters which would eventu-
ally coalesce to form our Universe.

In this Letter, we will show that these problems with
extended inflation can be avoided in a new class of mod-
els promulgated at Damour, Gibbons, and Gundlach
(DGG). They start with a generalized JBD model in
which the JBD scalar field @ couples with difl'erent

strengths to "visible" matter and to "invisible" matter
(thus leading to a violation of the weak equivalence prin-
ciple). We will follow the line taken by DGG, and as-
sume that the inflaton of extended inflation has an "in-
visible" coupling to the JBD scalar field. Since the iden-

tify of the inflaton is unknown, there is no reason to be-
lieve that it should couple to the JBD scalar field in the
same way as does normal matter. Although this may
seem ad hoc, it should be emphasized that such a situa-
tion in fact arises naturally in superstring theories, '
where the dilaton plays the role of the JBD scalar field.
It is the existence of a new parameter, namely, the ratio
of the couplings of visible matter and the inflation field
to the JBD scalar field @, that allows us to evade the
bounds on the co parameter in JBD models.

We first express the action for our theory in the con-
formal frame in which the visible sector couples only to
the metric g„,, and not to the JBD field. This frame is
referred to as the Jordan conformal frame. Following
the metric and Riemann-tensor conventions in Ref. 8,
the Brans-Dicke gravitational action Sao[g„„@]is given
by

,, a„ea,c
Sao[g„,„@]= d x( —g) ' —@R+cog"'

where co is the JBD parameter constrained by observa-
tions to be greater than 500 and 4 is the JBD scalar
field.

Denoting the inflaton field by tlrt, its action in the Jor-
dan frame is

S [g„,,@,tlr ] = d'x( —g) 'I'[-'(16trG @)' ~g"'B„tlr B,, tlr —(16ttG @)"' ~'V(Vr )] .

Denoting the field content of visible matter by tttt, in the Jordan frame the action for visible matter St [g„„tits] would
simply be the action for a minimally coupled field, e.g. , Eq. (2) with tlrt tirz and p= 1. Expressing the action in the
Jordan frame, the parameters of the model are p and co. We further suppose that visible matter is described as usual
via a perfect-fluid stress-energy tensor and will play no role in inflation.

Although we will find it convenient to work in the Jordan frame, it is instructive also to express our results in the Ein-
stein conformal frame where the coefficient of the Ricci scalar is constant. This frame is realized by use of a metric g„„
related to the metric in the Jordan frame by the conformal transformation g„,. 0 g„„, where 0 =(16trG&@)
The action in the Einstein frame is

S= d x( —g)'I — R+ —g"'tI„&t),& +St exp
1 6z'G)y 2

2Pt y — 2P vtt'
g„„yI +Sy exp tv~ PV (3)
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where ()) is related to @ by 16)rG)v@ =exp(2p) (()/(()p), with (()p
= (3+2'())/16)rGlv. In Eq. (3), S;[exp( —2p;((i/((ip)g„„y;]

(i =I, V) is the action for a minimally coupled field with metric exp( —2P, 4)/(()p)g&, For example, for a scalar field,

S;[exp( P—, (t)/(t)p)g„, „(I/, ] =„d'x( —g) ' '[ —, exp( —
P, ((/(()p)g"" t)„'(t/; (I,, y; —exp( —

2P;(t)/(t)p) V((t/, )] . (4)

a + k

a a2
=—(16)rG)v@) ~+—A

~ 2 co @ a@
3 6 4 a @

—+3——=a 4 4PA
(162rG)v@) ] —2

a 4 2co+3

These equations are most easily solved in terms of the di-
mensionless field g—= 16)rG)v@. This system of equations
admits power-law solutions for k 0, just as in the origi-
nal extended-inflation scenario:

a(t) =a(0)(I+Bt)~, p =(p) —P+ -', )/(2P —1)P,
(6)

g(t) =g(0)(1+Bt)~, q =2/(2P —1) .

Here t =0 signifies the onset of inflation, and B is given

by

4AP (213 —1)'[~(0)]'-'~
(2t()+3)(6to+9 —4p )

(7)

It can easily be seen that the above results reduce to
those found in Ref. 1 when lg= 1. This is as it should be,
since in this case the conformal transformation that
takes us from DGG's original action to ours will act on
the visible and inflaton sectors identically.

We now turn to the questions of whether inflation
occurs in this model and whether a "graceful exit" can
be achieved. Clearly, a necessary condition for inflation
to occur in our theory is that the exponent p be greater
than 1 so that a/a is a positive definite during the
vacuum-energy-dominated period. This first constraint
can be written in terms of tp and P as

tp+-, &2P (8)

In order that sufficient inflation occur, we require
a(t,„d)/a(0) & 10, where t,„d denotes the end of the

In the Einstein frame the parameters of the model are P/
and P) . They may be related to the model parameters of
the Jordan frame by P =P//P) and p) =(P) —6)/4.
The constraint c() & 500 implies pl (0.022, while present
observations are consistent with

~ Pt ~

& l. It is not
meaningful to mix the model parameters of the two
frames. One should consider either (to, P) or (P/, Pv) as
the parameter set.

Let us now write the metric in the standard
Robertson-Walker form with scale factor a(t) We . will

assume, as required for "extended" (as well as "old")
inflation to occur, that during inflation (t//=it/p, and

V((t/p) =pF, where the energy density of the false vacu-
um, pF, dominates the total-energy density. Setting
A=8)rGlvpF, we have the following equations of motion
for a(t) and C)(t):

2

inflationary period. Following the analysis of Ref. 4, we
relate a(t,„d)/a(0) to C&(t,„d)/@(0) via a(t,„d)/a(0)
=[4(t,„d)/@(0)]~ q. Since (I)(t,„d)-Mpl, and neglect
of quantum-gravity effects requires 4(0) & pF'/ -M,
we arrive at our second constraint,

S,(y, ) = d' l-, ~'-~(a„y)'+g"' ~'V(y )]. (lo)

As per our analysis in Ref. 8, the formalism of Ref. 10
can be applied to find a g-independent bounce action.
However, when proper care is taken in normalization
and in projection of the functional determinant to the
subspace orthogonal to the translational zero modes, a g
dependence appears in the prefactor:

g(t) g 2(l —p) —g [~(0)]2(l —t))(I +Bt ) 4(1 —p)/(2p —l)

where Xp is the (constant) tunneling rate for g =1. Thus,
the physical bubble-nucleation rate per unit four-volume
is time dependent in this theory. This is quite unlike the

co+& & 1+ P. (9)
10 —21og lp [M/(10 ' GeV) ]

Next, we turn to the constraints coming from percola-
tion and thermalization of the phase transition. The
basic techniques for calculating tunneling amplitudes in

field theories were developed by Callan and Coleman, '

and require computation of the Euclidean action of the
bounce configuration that interpolates between the true
and false vacuua. The tunneling rate per unit four-
volume is then given by X =A exp[ —SE((t/i))], where A
is the prefactor containing information about fluctua-
tions of the bounce configuration and S~ (yt) ) is the Eu-
clidean action for this configuration (denoted by (tltt).

This analysis was extended to include the effects of
(classical) gravity by Coleman and De Luccia. '' Unfor-
tunately, their analysis is not directly applicable to our
case due to the existence of the JBD field. In order to
compute the tunneling rate in this case, we need to un-
derstand how to generalize the existing formalism to the
case in which the false vacuum is "rolling" due to the
evolution of the @ field during the bounce. An attempt
along these lines was pursued by Accetta and Romanel-
li' with some success. However, for our purposes, we
follow previous work of ours on the subject and note
that at late times (or equivalently, for large values of the
JBD field) the variations of @ can be neglected, and we
can compute 1(, using the analysis of Ref. 8.

The Euclidean action for the (t/t field in the truncated
theory is given by
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case in the original extended-inflation model at late
times. "'

The parameter controlling the percolation properties
of the phase transition in this theory is' e= )—(t)/H (t),
where H(t) is the Hubble parameter a(t)/a(t) I. n our
model, we have

(12)

In order for the nucleation to be successful, clearly
e(t) must increase in time. This implies that 4P/
(2P —I) &0, which in turn implies that either P &0 or
P& —, . This will be subsumed by other constraints. The
time t,„d for which e(t) is larger than some critical value
of order unity corresponds to the end of the inflationary
period. ' '

We now turn to the constraint coming from the re-
quirement that the bubble clusters that will comprise the
observable universe have enough time to thermalize their
energy. The point is that the typical bubble cluster con-
sists of a large bubble, together with much smaller ones.
Most of the energy of the bubble is tied up in the bubble
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FIG. 1. The allowed region in ro-11 space is indicated.
Curves 1, 2, 3, and 4 correspond to the constraints in Eqs. (8),
(9), (13), and (14), respectively. The observational limit
co =500 is indicated.

4 [23+log~p[M/(10' GeV)] +log~p[(1
N+ —. 4 2+

n+ log)p[ln[p '(t,„d)]j

It is not unreasonable to suppose that p(t, d) & 1/e as in
Ref. 4, so that for M-10' GeV and n=5 at recom-
bination (T= —,

' eV), we have the constraint tp+ —',
& 20.7P . Note that setting P = I we recover the results
(and constraints) of Ref. 4. The result is that whereas
before the limit was to&20, the limit now is cp/P &20,
which can easily be satisfied for tp & 500.

Finally, we turn to the question of reestablishing a
common Robertson-Walker frame in all the bubble clus-
ters that will coalesce to form our Universe. We must

walls, and collisions with other bubbles are required in

order to allow this energy to spread through the bubble
interior. The question is how long does it take for this
energy to become thermalized, so as to lead to a homo-
geneous and isotropic universe.

If too many large bubbles are still completing the
thermalization process at cosmologically sensitive times,
severe conflicts with big-bang predictions will clearly en-
sue. Thus, we must demand that the fraction of
space in such bubbles be less than some predetermined
value when the temperature is T. The volume fraction
V & (r, t,„d), the fraction of the volume contained in bub-
bles greater than a given (comoving) size r at the end
of inflation, can be calculated exactly as in Ref. 4:
V& (r, t,„d) =In[p '(t, „d)](rp/r) . Here rp is the
asymptotic comoving size of a bubble nucleated at t,„d,
b—=4P /(to+ -' —2P ), and p(t) is the probability of
finding a point in space in the false vacuum at time t:
p(t)-exp[ —c(t/t, .d) " ' ]-exp[ —c(rp/r) ], where c
is a constant of order unity.

Imposing the condition that V & (r, t.„d) to be less than
10 " when the temperature is T, we arrive at the con-
straint

eV)/T]]

require that there be some way for the system to
remember the original (pre-bubble-nucleation) coordi-
nates. Weinberg argues that such a record can be
found in the time evolution of a(t), or equivalently @(t).
Since a constant Hubble parameter and 4(t) correspond
to the de Sitter situation with no distinguished frame, we
must require that there be sufficient variations of these
quantities. The relevant time interval over which these
variations should take place is between t,„d and t(r„„;„),
the time when bubbles with asymptotic sizes equal to
that of the observed universe were nucleated. The actual
interval may, in fact, be shorter since we expect that
homogeneity and isotropy must hold by the time of
recombination or perhaps even nucleosynthesis. Using
the fact that

H(t)/H(t«d) =[r,, (t)/rp]' " ''=(M/T)"

if we require a variation of m orders of magnitude in the
Hubble parameter H(t), we arrive at our final constraint

co+ —' &P(2P —1)(1+m '[23+log]p[M/(10' GeV)]

+Iogip[(1 eV)/T]] )+P.
(i4)

Taking M-10' GeV, T-10 keV, and m=1 as in
Ref. 4 leads to the constraint to+ —', & 19P(2P —1)+P.

We plot the constraints given by Eqs. (8), (9), (13),
and (14) together with the constraint that ro & 500 in

Fig. 1. It should be clear from this plot that there is am-
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pie room for all these constraints to be satisfied. If we

make the constraints tighter [i.e., demanding that a
smaller fraction of space still be thermalizing at recom-
bination, or more orders of magnitude variation in

H(t)], larger values of P will be required.
The constraints on (co,P) can be easily translated to

constraints on the parameters in the Einstein frame,
(Pt, Pt ). Notice from Fig. 1 that for large ca, the most
restrictive limits come from Eqs. (8) and (13). These
two constraints can be combined into a P, , -independent
constraint on Pt of

(is)

Although a factor of 3.2 between the upper and lower
bounds for Pt may not seem large, it should be remem-
bered that Pt appears in the exponent. To illustrate this
point, consider simply for the purpose of comparison, the
implications of a similar range in Pt . The observational
upper bound on Pp is Pt ~ 0.022. A hypothetical range
in Pt of a factor of 3.2 would correspond to 0.0069
~ Pt ~ 0.022. Again the factor of 3 between the upper

and lower bounds seems unduly restrictive. However,
this range of Pq would correspond to an allowed range in

ta of 5288) ca~ 500, which would not be considered
overly restrictive. Likewise, we could define a parameter
rat =(Pt —6)i'4 analogous to to for visible matter. The
allowed range of col corresponding to the limits of Eq.
(15) would be 20) cat ~ 0.54.

The moral is that it is not productive to argue about
whether the range of allowed values of the model param-
eters is su%ciently large, so long as no fine tuning (in the
technical sense) is required. The real question is wheth-
er the ultimate theory of gravity will give our model.
This question also arises in all models of extended
inflation.

We now consider the question of reheating in our
model. The energy of the bubble walls is in the form of
inflaton matter. In order to convert this energy to visible
(i.e., standard) matter, we may add couplings between
the inflaton and visible sectors. One example might be
A, lp'ypi. The only constraints on such couplings are that

a reasonable reheating temperature be obtainable (in or-
der that nucleosynthesis and/or baryogenesis be able to
occur).

To conclude then, we have constructed a model of ex-
tended inflation in which the inflaton couples to the JBD
field differently than standard visible matter. This yields
a theory in which the JBD field is massless (i.e., no po-
tential for @ is required) and which meets all the re-
quirements for an acceptable inflationary model with no
fine tuning. If this avenue is to be pursued further, a
realistic particle-physics model with the required cou-

plings must be constructed.
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