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Transport Properties, Lyapunov Exponents, and Entropy per Unit Time
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For dynamical systems of large spatial extension giving rise to transport phenomena, like the Lorentz
gas, we establish a relationship between the transport coefficient and the difference between the positive
Lyapunov exponent and the Kolmogorov-Sinai entropy per unit time, characterizing the fractal and
chaotic repeller of trapped trajectories. Consequences for nonequilibrium statistical mechanics are dis-
cussed.
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Randomness is a property shared by both conservative
and dissipative dynamical systems. Recently, an exten-
sive amount of work has been devoted to this fundamen-
tal property and, in particular, to the mechanisms by
which it can be generated from deterministic evolution
laws governed by diH'erential equations or mappings. '

Dynamical randomness is characterized by a positive
Kolmogorov-Sinai (KS) entropy per unti time, htts, giv-

ing the data-accumulation rate necessary to follow the
deterministic time evolution and to recover the continu-
ous trajectory of the system from the recorded data. '2

In closed dynamical systems, such as strange attractors
or defocusing billiards, it is known that dynamical ran-
domness has its origin in sensitivity to initial conditions,
which is characterized by the Lyapunov exponents

More precisely, according to Pesin's theorem,
a direct relationship is established in the form
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dependent) in the system,

S- lim ((x, —xp)')/2r. (2)

On the other hand, deterministic dynamical systems
are known to give rise to transport properties like
diffusion. We shall be concerned in the present Letter
with dynamical systems of infinite spatial extension
where particle diffusion is possible in real space. Exam-
ples of such systems are the coupled turbulent cells of
the Couette-Taylor flow or theoretical models like the
Lorentz gas or coupled one-dimensional maps' where
the diffusion coefficient reflects the random walk per-
formed by the individual particles (assumed to be in-
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FIG. l. Geometry of the hard-disk billiards. The disks of
radius a are fixed in the plane at intercenter distance r. A
point particle undergoes elastic collisions on the disks. (a)-(e)
are open billiards where almost all trajectories escape to
infinity. The scatterers (a)-(d) are composed of one to four
disks, respectively, while (e) depicts a slab of width L in a tri-
angular lattice. On the other hand, (f) is a closed billiard
formed by an infinite triangular lattice of hard disks, i.e., the
Lorentz gas. The circle of radius R encloses the fractal repell-
er of trapped trajectories defined in text.
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As proved for the Lorentz gas by scaling-limit meth-

ods, the projection x, of the position of the particle
along an axis is driven over large scale by Gaussian
dynamical fluctuations according to

lim Prob[», —xp & u(2X)r)'
OO

~u
=(2K) ~ e dS . (3)

Despite the probabilistic nature of such a property, it is

natural to conjecture that there should be an intimate re-
lation between the aforementioned randomness and the

small-scale motion of the particle. The purpose of this
Letter is to establish a direct connection between these
properties for a class of diffusion processes in dynamical
systems with few degrees of freedom.

%e shall illustrate the main ideas with the two-
dimensional Lorentz gas where a point particle is scat-
tered by several hard disks of radius a fixed in the plane.
Scatterers with two, three, or more disks can be con-
sidered (Fig. 1). Collisions on the disks are defocusing.
Nearby trajectories issued from a single point in the re-
mote past form a front, called the horocycle, ' with a
curvature given by

"
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where Il;I, -~ are the lengths of paths between the suc-
cessive past collisions while lp is the length of path be-
tween the current position and the previous collision.
The p s are the angles between the incident velocity and
the normal at each impact on the disks and they satisfy
z/2 ~ p, ~ 3z/2. Notice that the curvature (4) is always
positive, expressing the defocusing character of the col-
lisions on the disks. Every trajectory of the Lorentz gas
is thus unstable and has a positive, a vanishing, and a
negative Lyapunov exponent, (X~,O,

—X~), because this
billiard has two degrees of freedom and is time-reversal
symmetric. We note that the magnitude of the velocity v

is a constant of motion so that the time spent along a
path is obtained as its length multiplied by c. The posi-
tive Lyapunov exponent per unit time is then given by
the time average of the horocycle curvature (4) multi-

plied by the velocity,

+l
X) =v lim — x.„(X,)dr.
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In an unbounded (open) system such as the billiards of

Figs. 1(a)-1(e), almost all trajectories escape to in-

finity. ' If an ensemble of particles with the same mag-
nitude of velocity but, otherwise, arbitrary initial condi-
tions is placed between the disks at time zero, the num-

ber of particles still present in the vicinity of the disks
after a lapse of time t decays exponentially according to

Ã, —Npe ", where y defines the escape rate. ' For in-

stance, when the scatterer is composed of two disks there
exists a periodic orbit trapped between the two disks,
along the line joining both centers. This periodic orbit is

unstable with a positive Lyapunov exponent equal to the
escape rate [cf. (4) and (5)],

U r —a+(r' —2ar)'
y=X) = ln

2a a

where r is the distance between the disk centers.
When the scatterer is composed of three disks a new

and dramatic phenomenon arises. The ensemble of tra-
jectories which are forever trapped between the disks
now contains an infinite number of periodic orbits em-
bedded in an uncountable set of nonperiodic orbits. ' '
This so-called repeller ' has a zero Lebesgue measure in

the phase space and is thus a fractal' set sustaining
chaotic motions. Indeed, the trajectories of the repeller
and in one-to-one correspondence with a symbolic dy-
namics with a positive KS entropy per unit time. When
a partition of the phase space into cells labeled by in-

tegers is performed any trajectory of the repeller which

is observed along n consecutive collisions can be repre-
sented by a string of integers (cop, co~, . . . , co„&) togeth-
er with the minimum time T(coo, co~, . . . , co„~) to per-
form these n consecutive particular collisions. The KS
entropy is then defined by '2

A ys =sUP~ 11IYl
, Prob(coo, coi, . . . , co„ i)ln Prob(coo co&. ~ con —&)

, Prob (coo, co ~, . . . , co„—,)T (cop, co ~, . . . , co„—~ )

where the supremum is taken over partitions A into finer and finer cells and where Prob denotes the ergodic natural in-

variant probability measure over the repeller. In general, the KS entropy of a repeller is not equal to the ergodic mean

Lyapunov exponent given by (5). In fact, the exponential separation of nearby trajectories contributes not only to ran-
domization on the repeller, but also to the escape from the repeller. Accordingly, the escape rate is then given by the
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formula

(8)

plying (8), we get

&i(VL) —&Ks(Vi ) =$(ir/L) '+ 6(1/L '),
which generalizes both (I) and (6). ' When the disks
are close together and delimit a bounded domain of the
plane forming a closed billiard, the escape rate vanishes
and the Pesin formula (1) is recovered. On the other
hand, the KS entropy is vanishing for the periodic repell-
er of the two-disk scatterer so that (6) follows. An in-
equality proved by Ruelle guarantees that (8) is always
non-negative. ' Equation (8) can thus be interpreted as
saying that dynamical randomness inhibits escape from
the repeller. '

After this survey, we turn to the case of a many-disk
scatterer forming a triangular lattice of width L much
greater than the disk radius a and the intercenter dis-
tance r [Fig. 1(e)l. We assume that a point particle can-
not travel through the lattice without collision, impos-
ing the condition r (4a/3'~. As for the three-disk
scatterer, the set of trajectories trapped between the
disks forms a fractal repeller (VL) characterized by a
positive Lyapunov exponent X~(PL) and a positive KS
entropy hKs(PL). The escape rate of the effusion pro-
cess through the borders of the scatterer of Fig. 1(e) is

then given by (8). When the width L of the slab is large,
the effusion process is controlled by particle diffusion in

the disk lattice. Now, diffusion in the Lorentz gas has
been studied extensively over the last decade. Using
the scaling limit (e 'x, e 'y, c t) with e 0, Buni-
movich and Sinai proved that the large-scale motion of
the point particle in the Lorentz gas is diffusive in the
sense of Eq. (3) with a positive and finite diffusion
coefficient S. Machta and Zwanzig gave a quantitative
estimation of the diffusion coefficient as 2) =1.97m(r
—2a) for a particle of velocity U, provided the
bottleneck width r —2a is small enough. The probabili-
ty density f(x,y, t) of finding the particle near (x,y) is
thus governed in the scaling limit by the diffusion equa-
tion

where 6(L ') are corrections due to the finiteness of
the many-disk scatterer. We observe that the difference
between the Lyapunov exponent and the KS entropy of
the fractal repeller (VL) vanishes in the limit L
Indeed, for a large scatterer, the fractal repeller starts to
fill the three-dimensional phase space of the flow (8)
while the escape rate decreases like L 2. The invariant
probability measure becomes the Liouville invariant
measure. According to Pesin's formula (1), the Ly-
apunov exponent and the KS entropy are then equal to
the finite and positive Lyapunov exponent l~(8) of the
closed Lorentz gas. The point is that, as Eq. (11) shows,
the difference between the Lyapunov exponent and the
KS entropy of the many-disk scatterer is controlled by
the diffusion coefficient of the Lorentz gas. Rewriting
(11),we finally obtain our main result

X) = lim (L/z)'[Xi(VL) —hvs(VL)l,

which establishes a fundamental relationship between ki-

netic theory and ergodic theory for this class of dynami-
cal systems of infinite spatial extension. '

The fractal character of the repeller has a further
consequence. The classical scattering process on the
many-disk scatterer is irregular and shows high sensitivi-

ty to initial conditions, a phenomenon which has been
studied in several recent publications. In irregular
scattering, the outgoing trajectory is a very complicated
function of the incoming trajectory with singularities on

the fractal set of trajectories which are asymptotic to the
fractal repeller. The self-similarity of the scattering
functions can thus be characterized by the information
dimension of the repeller that can be calculated asymp-
totically for large L using Young's formula, '-' 2'

r

Dr(PL) =3- 2$ z +6 1

X)(N) L L'

Now, we can calculate the escape rate of the many-disk
scatterer of Fig. 1(e) by solving (9) with the boundary
conditions f(x =O,y, t) =f(x =L,y, t) =0, expressing
the fact that the particles escape in free motion from the
borders (x =0 and x =L) of the disk lattice. In the scal-
ing limit, the system and its repeller are uniform along
the y axis so that the diffusion and effusion processes are
independent of the variable y. The solution is then

f(x, r) = g c e " 'sin
m=1 L

(io)

with y =X)(nm/L) . The long-time decay is dominat-
ed by the smallest rate, y~ =$(x/L), which is to be
identified with the escape rate of the repeller, y;' Ap-

It is striking to observe that irregular scattering is thus
intimately related to a typical irreversible macroscopic
process like diffusion in large open systems.

Consider now the original Lorentz gas forming a tri-
angular lattice but covering the whole plane [Fig. 1(f)].
The dynamical system being closed, Pesin's formula ap-
plies with averaging taken over the Liouville measure.
Nevertheless, it is still possible to define here a fractal set
as follows. A large circle of radius R ())a,r) is drawn
on the lattice. The ensemble of trajectories of the
Lorentz gas remaining forever inside this circle forms
another fractal set (VR ) of zero Liouville measure.
Solving the diffusion equation (9) with the Dirichlet
boundary condition on the border of the circle of radius
8, we infer that almost all trajectories escape from the
fractal V R with a rate y =2)(2.404 82/8), where
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2.40482 is the first zero of the Bessel function Jo(z).
Hence, the following equation results from (8):

' 2

(14)

This relationship between diftusion and dynamical insta-
bility is reminiscent of first-passage-time problems which
are often encountered in the stochastic theory of reaction
rates. In a way, our results show how first-passage-
time type of prdblems may arise in deterministic sys-
tems. In this way, diA'erent fractals can be constructed
with different "absorbing boundaries' on the lattice cor-
responding to diff'erent nonequilibrium problems. Simi-
lar considerations hold for other diA'usion models like the
chain of baker transformations, as shown elsewhere, or
the random Lorentz gas.

We conclude with some comments about the impli-
cations of our results for nonequilibrium statistical
mechanics. It is known that the fluctuation-dissipation
theorem relates the diA'usion coefficient to the autocorre-
lation function of the velocity via the Green-Kubo in-

tegral if the system presents the ergodic property of mix-
ing. With Eqs. (12) or (14), we are now able to under-
stand how difl'usion, dynamical randomness, and sensi-
tivity to initial conditions are interconnected. We believe
that the present theory can be generalized to the hard-
sphere gas where similar relationships could be estab-
lished for the other transport coefficients like viscosity or
heat conductivity. In this respect, microscopic simula-
tions like molecular dynamics are likely to provide useful
insight into this problem.
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