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Helical Structures of Tilted Chiral Lipid Bilayers Viewed as Cholesteric Liquid Crystals
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~e have derived the tilt and surface shape-equilibrium equations for tilted chiral lipid bilayers
(TCLB) in analogy with cholesteric liquid crystals. On a cylindrical surface the field of tilt directions of
TCLB molecules forms a right-handed helix with 45' gradient angle for k2&0 or a left-handed helix
with —45 for k2 &0, where k. is the cholesteric chiral curvature modulus. In addition, there exists
another t Ipe of helical structure which looks like twisted strips or helicoids. We also show that on a
spherical surface the tilt field has at least two singular points. These results explain the observed succes-
sion of transitions from a vesicular dispersion to a phase involving helical structures and then to tubes.

PACS numbers: 82.70.—y, 02.40.+m, 61.30.6d

Several recent papers have reported helical structures
of various amphiphiles, ' especially lecithin, as they
are precipitated from water solutions or solutions with

organic solvents, or as they are obtained from the freez-
ing of fluid bilayers. One type of the helical structure
looks like a ribbon wound on a cylinder with spiral gaps,
Sometimes the gap closes as time goes on, so that the
ribbon transforms into a prolate tube. Some of the tubes
are multilamellar and look like a soda straw (Fig. 3 of
Ref. 5). A remarkable property of the observed helical
structure is that the spiral makes an angle of nearly 45'
with the tube axis. Another type of helical structure is

a helicoid or twisted strip. The twisted strip seems to be
a crossover from the vesicular dispersion to the helical
structure of the first type (Figs. 1A-1D of Ref. 1) or a
crossover region of a bending wound-ribbon helix (Fig.
I B of Ref. 2). Technically, these structures can be used
in making electro-optical elements, microelectronic ele-
ments, reagent delivery vehicles, and microsurgical ma-
terials. A recent significant advance is the successful
coating of the tubes with nickel and/or copper to make
them highly conductive.

On the theoretical side, a major challenge is to under-
stand the mechanism of the winding and the twisting of
the lipid bilayers. Assuming competition between the
spontaneous torsion of the edge and the bending of the
bilayer, Helfrich ' developed a theoretical treatment of
the wound-ribbon helices. The tube formation was ex-
plained by de Gennes' ' in terms of a buckling of the Hat

solid ribbon due to the ferroelectric polarization charges
on its edges. More recently, Helfrich and Prost' pro-
posed an improved theory that employs a new linear
term of C2 or D2 symmetry linked to the molecular
chirality in the bending energy of bilayers. However, all
these theories give no discussion of the more difticult
cases of the twisted strips and the vesicular dispersion.

Our approach follows Helfrich and Prost' in dealing

with the membrane elasticity, but, instead of using a
term of C2 or D2 symmetry, we introduce a linear term
with D symmetry to study helical-structure problems.
In other words, instead of considering ferroelectric and
chiral smectics (S, ), we consider cholesterics. With this
improvement of the symmetry, we are now able to deal
not only with wound-ribbon helices but also with twisted
strips and vesicles of tilted chiral lipid bilayers (TCLB).
Based upon the curvature-elasticity model of cholester-
ics, we find the general tilt equation and surface-
equilibrium equation of the TCLB. By solving these
equations we can show that, on a cylinder, the tilt-
direction field of TCLB molecules forms right-handed
helices with 45' gradient angle for k 2 & 0 and left-
handed helices with —45' gradient angle for k2&0,
where k2 is the chiral curvature modulus of the chol-
esteric liquid crystals. In particular, we can show that
the pitches of the helices are of the order of that of
cholesterics (0. 1 —10 pm). The twisted-strip solution
and the tilt field of spherical vesicles are also obtained.
For spherical vesicles we find that the field has more
than two singular points. Our calculation also indicates
a decreasing sequence of the elastic energies associated
with vesicle, twisted-strip, and wound-ribbon solutions.
This result explains the experimentally observed se-
quence of transitions from the vesicular dispersion to the
twisted-strip helix and finally to the wound ribbon.

The bulk elastic free-energy density of a cholesteric
liquid crystal may be written' (neglecting a trivial con-
stant),

gLc= —, [k)((V d)'-+k22(d V&d) +k33(d Vd) ]

—k2d. yxd,

where d is the director field and k l 1, k22, and k33 are the
splay, twist, and bend elastic moduli and the last term
characterizes the chirality of the cholesteric liquid crys-
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tal. All observations demonstrate that the chirality of
the molecules plays a crucial role in the formation of the
helical structures of TCLB. Here, for simplicity, we

consider for the moment only the last term of Eq. (1):

gch = k2d' Vxd . (2)

In other words, we consider a TCLB with strong chirali-
ty. We may consider the TCLB as a curved cholesteric
layer sandwiched between two surfaces Y(u, v) and

Y(u, v)+ n( tt v)t, where n is the unit normal of the sur-
face Y and t is the thickness of the TCLB.

Since t is much smaller than the linear dimension of
the surface, we may calculate the elastic energy of the
TCLB as

(a) (b) (e)

F= g,hdV=t (~g,hdtv, (3)
FIG. 1. Schematic illustrations of the helical structures: (a)

wound ribbon; (b), (c) the twist strips; (d), (e) spherical vesi-
cles. The arrows represent the local tilt direction.

where dV is the volume element of the bulk and dA is

the area element of the surface Y. Let us represent the
tilt vector field by on the surface, and Hp is the angle between the director

(the average direction of the hydrocarbon chain of the
TCLB molecules) and the surface normal n. In general,
for the Lp+ phase of a TCLB, 00 is assumed to be con-
stant. From Eqs. (2) and (3) we have the elastic energy
per unit area: '

G =tg, h =k2te „[g;k (dt, + I ",d, )cosHp —2L,kg, tdt, dt]g

d =d]Y]+d2Y2+0 cos00,

where Yi =t)„Y, Yq=8, , Y, the scalar fields di and d2
associated with Y] and Y2 describe the tilt-direction field

(5)

2kg' g„d, +k2e3t, [2(gttL, +gtL, , )dtcosHp (g; t, +gttf'; )cos Hp]=0 (i=1,2),
where k(u, v) is the unknown Lagrange multiplier associated with the condition

d=l .

Here, e;~& is the permutation tensor, g;~ and I.;, are the first and second fundamental forms of the surface, respectively,

g =det(gt), and I;~ is the Christoff'el symbol.
The Euler-Lagrange equations for G give the tilt-equilibrium equation

If the equilibrium surface Y is given, we can solve Eq. (6) for di, d2, and k under the condition d d =1. However, the
search for an equilibrium surface necessitates the calculation of the energy variation with the surface shape Y. The
procedure of such a calculation is illustrated in Ref. 15. We do not give details here but write down the condition of
equilibrium directly:

g 't'k te „[(Kg, —2HL, )+(a,a, +a„,r,„)]g,d d cosH —2XL„d,d, =0, (7)

dt =2 ' -'po 'a] sin00, d2=2 ' a2sin00, (9)

where u =p, v =z, and (ai, a2) =(~ 1, +. 1) or (~ 1,

where H and K are the mean curvature and Gaussian
curvature, respectively. In fact, Eq. (6) expresses the
balance of the force moment, while Eq. (7) gives the bal-
ance of the normal forces per unit area of the surface.
Both Eqs. (6) and (7) involve the elasticity-induced
stresses and torsions of the curvature elasticity.

Application of Eqs. (6) and (7) to the case of a cylin-
drical surface of radius po represented by

Y =(ppcosp, ppsinp, z)

shows that it is an equilibrium surface, provided the tilt
field satisfies

Y=(pcosttt, psinp, bttt) (0(p(pp), (10)

Eqs. (6) and (7) show that it is an equilibrium surface if
and only if

di =0, d2=a~(p +b ) 't sinHp,

t +. 1) depending on the sign of k2 (see below). Since the
tilt on the edges of the wound ribbon should be along the
edge lines, Eq. (9) shows that the tilt field and the edge
lines are helices around the cylinder with ~45' (or
T 135') gradient angle [Fig. 1(a)]. This result agrees
with the experimental observations. ' -'

For a helicoidal surface of radius pp and pitch 2trtbt
[Figs. 1(b) and 1(c)] represented by
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or

d] =a]»n~o, d2 =0. (i 2)

Here u =p, v=p, and the pair (tti, tt2) has the same
meaning as in the case of the cylindrical surface. The
tilt field given by Eq. (11) [Fig. 1(b)] may represent the
experimentally observed twisted strip, since it may
change into the wound-ribbon helix without changing the
local tilt. The tilt is given by Eq. (12) [Fig. 1(c)] has to
be ruled out, since the tilt on the edge is perpendicular to
the edge line.

On an equilibrium spherical surface of radius ro, with

the same notation as in Ref. 15, both the latitude lines,

gLC gNL+gch ~

~here

g NL
= (k/2) [(V d) '+ (V X d) '] .

Now, we have for the wound ribbon

(20)

wound ribbon
The above-mentioned results seem to agree satisfacto-

rily with many experimental observations. However,
there is still the problem of the size of the helical struc-
tures. In order to show the general behavior, we consider
the simplified case of one elastic constant, i.e., k]] =k22
=k33 k. In this case Eq. (1) simplifies to

d] =0, d2 =a2ro ' sin8o sin '0,

and the longitude lines,

d i =a]ro sin0osin '0, d2 =0,

(i 3)

(i4)

FNL
=

& g NL d V =ktA (1+sin Hp)/2pp .

The total elastic energy F~T becomes

Fg T =FNL+Fg.

(2i)

F~ = —2a]a2k~Atpo cosOosin Oo,

where 8 is the total area. It is clear that for k2 & 0 the
right-handed helix (aia~= 1) has a lower energy than
the left-handed one (aia2 = —I) and vice versa for
k2 & 0. This is in agreement with the case of cholesteric
liquid crystals. Similarly, we have the energy of the
twisted strip FT as

Fr = 2k2Alpp 'f(pp/b)cosHpsin Hp,

where the factor f(x) is given by

(i6)

(i+x-') '"
f(x) =2xln x+ x(1+x') '+ln[x+(1+x ) ' ']

are solutions of Eq. (6) [Figs. 1(d) and 1(e)]. In both
solutions the north pole and the south pole are rotational
dislocations. This is not surprising, since it is well known
in diA'erential geometry that on a topological sphere a
line field has at least two singular points. It is these rota-
tional dislocations that give a higher energy to the vesicle
conformation and induce the vesicular dispersion, as
pointed out by de Gennes. ' ' The same geometry, shown
in Fig. 1(e), was invoked by de Gennes in explaining the
tube formation.

From Eqs. (3), (8), and (9), we have the energy of the
wound-ribbon helix as

=At [k(1+sin Hp)/2pp —2lk2lcosHpsin Hp/pp]. (22)

Minimization of F~T with respect to po yields

pp
= (k/2lk tl )(I+ sin Hp)/(sinHpcos Hp) . (23)

The ratio k/lk~l is simply the pitch p, h of the cholesteric
liquid crystal divided by z. ' Since the gradient angle of
the ribbon helix is equal to + 45', we find that the pitch
of the helix p is

p =2trpp =p,h(1+ sin Hp) sin '
Hp sin '2Hp . (24)

The pitch p, h of cholesterics is of the order of 0.1-10
pm, ' and therefore, the radius and the pitch of the hel-
ices is also of the order of 0.1-10 pm. This is in good
agreement with the experimental data. ' Equations
(22) and (23) indicate that, as the area A increases, the
total energy F~T becomes more negative. This may ex-
plain the formation of prolate tubes and multilamellar
aggregations.

Finally, in order to compare our theory with previous
theories, we have used some dilferential-geometry tech-
nology and derived the following general form of the
chiral elastic energy (3):

F = g, h d V = —k 2t cosHp IIt d dl

—2k2sin Hpf~ rg dA, (2S)

Numerical analysis shows that

lf (x) I
(0.984.

Thus, FT is always greater than F~. In the case of the
sphere we have, for both geometries, the energy

Fp- =0. (i9)

The result that F~ & FT & Fq confirms the observed
transitions ' from vesicular dispersion to twisted strip and

rg =(ci c )sinpcosp, (26)

where c] and c; are the two principal curvatures and p is
the angle from one principal direction to the local tilt
direction. The angular dependence is just what Helfrich

where the first term is the line integral taken around the
edge line of the TCLB, and the second one is the surface
integral of the geodesic torsion of the local tilt field. The
geodesic torsion rg may be written as'
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and Prost' found in the 5,*. model. There are two terms
in our expression of the elastic energy. The one that de-
pends on the surface integral will give the result which is
found by Helfrich and Prost. The other one, the line-
integral term, does not appear in their work. However, it
has some important consequences. For a half of a
sphere, as shown in Fig. 1(d), it implies a negative edge
energy if k2 corresponds to the appropriate rotational
senses. This explains the aggregation of narrow and pro-
late ribbon structures, which have obviously longer edge
lengths at fixed area than other shapes, e.g. , a half of a
sphere.

In summary, we have developed a theory of the helical
structures of TCLB as cholesteric membranes. Our pre-
dictions agree very well with the experimental observa-
tions. ' Thus, the known properties of cholesteric liquid
crystals may well be useful in understanding these heli-
cal structures of TCLB's. For example, the molecular
theory of cholesterics may reveal the nature of their for-
mation. Experiments to measure directly the tilt field
would be a useful check on our theory.
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