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Exact Mean-Field Hamiltonian for Fermionic Lattice Models in High Dimensions
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We show that even for fermionic lattice models with on-site interaction a mean-field Hamiltonian can
be constructed, which —in analogy with spin lattice models —becomes exact in the limit of high spatial
dimensions d. Here the mean fields are fermion operators, rather than numbers. We use this method to
obtain the exact solution of a simplified Hubbard model on a Bethe lattice for all temperatures. The or-
der parameter is found to have the conventional mean-field form, but exhibits unusually rich behavior as
a function of the interaction.
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H =Hk, „+H„+Hgl+Hy, (la)

Hk;„= g t~;~ci~, Hp = g p~n;~, (lb)
(ij),o ia

HU =Urn;tn;t, Hv =XXV n; n;, (1c)
1 (ij) crier'

where c; (c; ) creates (destroys) a cr spin at site i, with

n; =c; c; . In the original Hubbard model the hopping
constant t is independent of spin, and the interaction is

purely on site. A further simplification can be intro-
duced if only one of the two spin species is allowed to
hop (t t

= —t, t t =0). This simplified Hubbard model

Mean-field theories (MFTs) play an important role in

classical and quantum-mechanical many-body problems.
Although they are based on a gross simplification of the
underlying physics they often provide a good qualitative
description of the properties of a system. To assess the
validity of a MFT one needs to know whether it becomes
exact in some limit, such that it can be improved sys-

tematically, e.g. , by perturbation theory around this lim-

it. It is well established that for classical and quantum
spin lattice models (e.g. , Ising, Heisenberg) the mean-
field expressions for the free energies become exact for
high coordination number Z, i.e., for spatial dimension
d ~. ' For example, in the MFT for the Ising model
the local field at a given site is replaced by its expecta-
tion value, which is entirely described by a single vari-

able, namely, the order parameter (here, the magnetiza-
tion). It is intuitively clear that this approximation be-
comes exact for d ~, since a given spin "sees" a local
field composed of Z-O(d) neighboring spins, whose

fluctuations vanish in the limit d
The situation is fundamentally different in the case of

fermionic lattice models, i.e., models with itinerant
quantum-mechanical degrees of freedom. Typical exam-
ples are the Hubbard model and related models for in-

teracting lattice electrons, which are employed in

the study of itinerant magnetism, the metal-insulator
transition, and high-T, . superconductivity. For nearest-
neighbor hopping a generalized Hubbard model has the
form

was discussed as an approximation of the full model. It
was also considered by Falicov and Kimball as a model
for a semiconductor-metal transition and by Kennedy
and Lieb as a model for crystallization. In this model
the t spins have been proved to form a checkerboard
pattern at suffiiciently low temperatures and for half
filling, at least on AB lattices.

The conventional MFT for (1) is Hartree-Fock theory,
where the interaction is factorized; i.e., spatial fluctua-
tions are neglected as in the MFT for spin lattice models.
The question then arises whether here, too, this approxi-
mation becomes exact in d=~. The limit of high di-
mensions for Hubbard-type models has recently been in-
troduced by Metzner and Vollhardt. It has since been
shown to be very useful in a number of problems,
since many essential features of systems in d=3 (and
even lower) dimensions are well described by the results
in d =~. Making use of the fact that in d =~ the prop-
er self-energy becomes site diagonal, the simplified
Hubbard model was solved exactly in d=~ by Brandt
and Mielsch, " who showed that it is sufficient to solve
the atomic problem in a generalized, time-dependent
external field. From the diagrammatic expression for the
ground-state (or the self-) energy it follows that for the
Hubbard model Hartree-Fock theory does not become
exact in d=~. ' Indeed, fluctuations in the on-site
interaction, which are neglected within Hartree-Fock
theory, never become small, since

((n;t —(nit))(n;t —(n;i)))-O(1),
independent of dimension. Therefore, of all interactions
in (1) it is precisely the on-site interaction that remains
as the only dynamical interaction in d=~. This con-
clusion equally holds for the simplified Hubbard model,
at least for fixed U&0 and temperature T) 0.

We will now show how to construct a mean-field
Hamiltonian for Hubbard-type models which does
become exact in d=~. We will mainly consider the
simplified Hubbard model H", i e., t t =0, t

~

t/Z't with —fixed t (in the following t:1), and—
V ~ =0 in (1). From the analysis of Ref. 6 we conclude
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that it is the AB structure of the lattice that determines
the phase diagram. Therefore we will use a Bethe lattice
with coordination number Z, since in this case all calcu-
lations remain rather simple. (We will later see that for
Z ~ the results are indeed qualitatively the same as
those for a d=~ hypercubic lattice. ) Thereby we will

not only recover the existing exact solution of the model
in d=~ (Ref. 11) in a rather simple way, but will ex-
tend it into the ordered state and understand in which
sense high dimensionality leads to exact mean-field
features even in fermionic lattice systems.

To obtain a mean-field description we consider a site i
and investigate the influence of the surrounding sites.
The latter eflect is described by the Green function

G;, (r —r') = —(T,c;~(r)c;l (r')), whose time evolution is

given by the equations of motion. In particular, for i=j
the first derivative t)G;;/8 r involves the commutator
[H",c;l], the second derivative [H",[H",c;l]],
etc. In the limit Z ~ these commutators depend only
on a few dynamical degrees of freedom. For instance„
[H" ~, c;1] introduces only two new fermions c, and ct
which represent the entire first shell of neighbors of site

(2b)

H MF g [( 1 ) I/2

I(x)) o

+pt'+ icxfcx+ H.c.], (3a)

Hp = p)ni)+ 0tnit

+ Z [p Jnx. + (p J
—U)nx/], (3b)

I(x) ~ o

(3c)

1664

c, = [(1 —
p~ )Z] ' (1 —n, l )c;l, (2a)

Ij —
J 1

Cf=(p~Z) '
nJtCJJ.

ti —j
The fermion operators cf ("filled" ) and c, ("empty") de-
scribe annihilation of a J spin in the first shell provided
there is, or is not, an t spin present. The high dimen-

sionality becomes manifest in the prefactors in (2a) and

(2b): Only for Z ~ can one express the normaliza-
tion constants of the few fermions in terms of the densit)&

pt of t spins in the Ith shell (here I=1). Similarly, the
calculation of r) G;;/rtr yields four new fermions: c„,
c f cf, and cff, representing all possible paths from site
i to the second shell, where a J spin is annihilated. In

general, the nth shell enters only via the nth derivative of
6;; and is described by 2 fermions cx, representing the
possible ways X =(xl, . . . , x„), with xt =e,f, to travel
from site i to the nth shell (see Fig. 1).

The essential point is that the commutators occurring
in rJ"G;;/Br" may equally be derived from an effective
Hamiltonian H " that has the same form as H" but
where H, ", H~ ", and H„" only depend on the collec-
tive variables cx, namely,

f
e

e
f
e

e
f
e
f
e
f
e
f

FIG. I. EA'ective Bethe lattice on which the mean-field
Hamiltonian H, Eq. (3), operates; here f and e denote the
presence and absence of an 1 spin.

where I(X) is the length of the vector X. The notation
Xe represents the (I+1)-dimensional vector (X,e), and

similarly for Xf. Note that H " has a dependence on

site i, which, however, only distinguishes between the 3
and 8 sublattices. The fact that H" and H " in (3)
generate the same time evolution can readily be proved

by induction. We conclude that for Z ~ the dynam-
ics of the simplified Hubbard model reduces to that of a
noninteracting, tight-binding model on a Bethe lattice
with coordination number Z =3.

The form of H " is very illustrative. The interaction
term HU

" is strictly local: A Hartree-Fock decoupling
does not occur. The surrounding sites enter only in an

average way, namely, by modification of the chemical
potentials in H„". The kinetic energy H, " contains
hopping rates depending on the densities pt. Since pt
determines the order parameter in this model (see
below), we see that H "has genuine mean-field charac-
ter, in the sense that it is described by a single parameter
as in the case of spin lattice models. Furthermore, in our
approach the "mean fields" are collective fermion opera-
tors, rather than numbers.

Next we investigate whether the resulting critical
properties are mean-field-like. The model has an Ising-
like phase transition at half filling in dimensions
d ~ 2; for U ~ it is even unitarily equivalent to the
Ising model. In high dimensions one therefore expects
that the order parameter (i.e., the density diff'erence of
the t spins on the A and 8 sublattices) behaves like
the magnetization in the Ising model ~ To substantiate
these expectations we focus on the half-filled case
(pl =pl =U/2). The Green functions G;; can be calcu-
lated' by using the standard techniques for noninteract-
ing tight-binding models on the Bethe lattice. ' ' The
AB structure of the low-temperature phase implies

p~I ]
—=p~ and p.i =—pq for all l=1,2, . . . , so that the

order parameter follows as 5 =
~ p 4

—pe ~. With the
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definition p
—= —, (1~5) we write G;;=G — if pq=p

and G;; =G+ if pe =p+. One finds that G~(z), where
z =iso„and co„ is the Matsubara frequency, is the root
satisfying G+ -z for ~z

~

~ of the cubic equation

—G+ [(z —G+) —
4 U ] =z ——. Ud —G+, (4)

and G = —G+. The oA'-diagonal Green functions G;;,
with ~i

—
j~ =1, can be expressed in terms of G+ and

G —.' The kinetic energy per site is now given as

e, = ——Q ~G+(i~. )~'.2

COn)p

The potential energy can be expressed in terms of
a =—ReG+(z) and b=ImG+(z). With the definition

11

0

1

05

(~( )
U/2+'a

(cp b) '+—(U/2 + a ) ' '

one finds for the potential energy per site

(6a)
FIG. 2. The order parameter hp(8, U), with 8 = T/ T, (U), in

the limits U 0 and U

eu=U ———Z (p ( +p
4 P~„&p

(6b)

The internal energy is given by e(P, A) =e, +e~, and the
free energy is obtained by integrating the relation
e =B(pf)/BP as

Pf(P, h) = —In2+ p+ lnp++ p lnp

r P
dx e(x,a) . (7)

4 p

In order to localize the phase transition, we expand

f(P,h) in terms of 5, which leads to the usual
Ginzburg-Landau equation. In our model the prefactor
of the 6 term, f2(P), can be calculated explicitly. The
criterion fz(P, ) =0 is found to be equivalent to the T,
formula of Ref. 11.' For small and large values of U
the critical temperature T, (U) is found as

(2U) ' (U- ),kgT, —&

(U -/2n) ln (U ' ) (U 0).
(8a)
(8b)

The large-U result (8a) is the critical temperature of the
equivalent Ising model with coupling constant (2U)
The small-U result (8b) is new and can be compared to
the known bounds on T, : Kennedy and Lieb showed
that T, is bounded from below by U /~lnU~ as U 0,
and conjectured T„~U'. Equation (8b) shows that in

fact T, ee U ~lnU~.

Next we consider the temperature dependence of the
equilibrium order parameter hp(T). Near T, it follows.
from the expansion of f(P, h) that hp(T) ~ (T, —T) '~',

while at low temperatures 1
—hp a: exp[ —2e

~
(~)/ke T),

where el(P)—= Be(P, 1)/BA. Hence Ap has indeed the
expected mean-field form. The order parameter can also
be calculated exactly in the two limits U ~ and

U 0. In the Ising limit U ~, one obtains the
Curie-Weiss result 6 =tanh(A/8), with 8= T/T, (U),
while the results in the limit U 0 are less trivial (see

Fig. 2). At 8, = I, d (8) has a square-root singularity, but
the prefactor is extremely small (of order U~lnUP ).
The order parameter remains small, proportional to
U ', for all 8) —,'. Nonvanishing values of 6 for
U 0 are found only for 0 ~ 0 & 2, where the result is

remarkably simple: d =tanh(h/28) for U 0. Thus
there is an apparent critical temperature of —,

' T, . Some-
what surprisingly, one finds that these results for U 0
are identical to the corresponding Hartree-Fock predic-
tions, ' which hence become exact in this limit.

The exact solution in d =~ can also be obtained in the
presence of nearest-neighbor interactions, since this only
leads to a modification of the chemical potentials. The
phase diagram can be drastically diff'erent then. ' Our
method can also be used on regular lattices, e.g. , the hy-

percubic lattice. In this case there are n! possible paths
of equal length n between two lattice points i and j if
~i

—
j~ =n. Hence it does not suffice to consider fermions

cx representing paths. Rather, one obtains a new fer-
mion for every possible conjiguration on the hypercube
formed by the union of all paths of length n between i
and j. Nevertheless, the mean-field Hamiltonian still
has the noninteracting tight-binding form, but this time
on a lattice with a complicated topological structure in-

volving loops. Apart from this the structure and inter-
pretation of the mean-field Hamiltonian is identical.
The extension of our method to the full Hubbard model
is possible in principle. The hopping of the t electrons
destroys the structure of the cx operators, giving rise to
many new fermions. However, in d=~ the Hubbard
model and its simplified version coincide for large U at
half filling. Besides that our method directly yields the
exact solution of the Hubbard model in simplified
geometries, e.g. , clusters. '

In summary, we have pointed out, and have clarified,
the relation between high dimensions and mean-field
theories for fermionic lattice systems. For the simplified
Hubbard model on a Bethe lattice we showed that the
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exact solution for Z ~ can be derived from a mean-
field Hamiltonian which has a tight-binding form and is

a simple function of the order parameter. ' This exact
mean-field theory diAers from Hartree-Fock theory
(which generally does not become exact for d ~) in

that (i) decoupling of the on-site interaction does not

occur, and (ii) the "mean fields" are operators, not num-

bers. We also showed that near T, and at low tempera-
tures the resulting thermodynamic behavior has the
well-known mean-field form. These results shed new

light on the properties of itinerant quantum spin systems
and their mean-field description.
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