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Berry's Phase and Persistent Charge and Spin Currents in Textured Mesoscopic Rings
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We consider the motion of electrons through a mesoscopic ring in the presence of a classical, static, in-
homogeneous, magnetic field. Zeeman interaction between the electron spin and this texture couples
spin and orbital motion, and results in a Berry phase. As a consequence, the system supports persistent
equilibrium spin and charge currents, even in the absence of conventional electromagnetic flux through
the ring. We mention the possibility of analogous persistent mass and spin currents in normal 'He.
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The quantum orbitial motion of electrons in mesoscop-
ic normal-metal rings threaded by a magnetic fiux pro-
duces striking interference phenomena such as persistent
currents' and the Aharonov-Bohm eA'ect. Similarly,
when a quantum spin adiabatically follows a magnetic
field which rotates slowly in time, the phase of its state
vector acquires an additional contribution known as the
Berry phase. '

The purpose of this Letter is to explore the combina-
tion of these two quantum phenomena by examining the
interplay between orbital and spin degrees of freedom for
an electron moving in a mesoscopic ring. To this end,
we shall consider a ring which is placed in a classical,
static, inhomogeneous, magnetic field, i.e., a texture, as
depicted in Fig. 1.

As a consequence of its orbital motion through the
texture, the spin experiences a varying magnetic field,
which results in a geometrical —or Berry —phase, be-
sides the usual dynamical factor. This geometrical
phase, which can be reformulated in terms of a spin-
dependent gauge potential, leads to persistent equilibri-
um charge currents. It also leads to persistent spin
currents and causes an Aharonov-Bohm interference
eA'ect. These phenomena should be distinguished from
the related consequences of the conventional electromag-
netic gauge potential.

FIG. I. Mesoscopic ring (thick circle) in an inhomogeneous
magnetic field (arrows) with tilt angle g. The local cylindrical
coordinate system at the position 8 is indicated by le„ep, e-}.

Using a path-integral approach to decouple the orbital
and spin motion, and an adiabatic approximation, we

compute the equilibrium expectation values of the mag-
netization and persistent charge and spin currents. We
derive explicit formulas for these quantities, and examine
certain limits in detail. We comment on dynamical
properties, and conclude with a brief discussion of exper-
imental consequences for normal-metal and - He rings.

We consider noninteracting electrons of mass rtt,

charge e, and spin —.', confined to a ring of radius a, in

the presence of a specified texture Bn. The ring is taken
to be strictly one dimensional, lying in the x-y plane
with its center at the origin, and the position of the elec-
tron is specified by the angular coordinate 0. The Ham-
iltonian for this system is taken to be

H =, pg
— Ag —yBn(8) rr,

1 . ea
2ma

where p is the angular momentum operator conjugate to
the coordinate operator 8, Acr'/2 (with i =1,2, 3) are the
Cartesian components of the spin operator, and y
=geh/4rrtc is the Bohr magneton.

The texture Bn=VxA is a classical, inhomogeneous
magnetic field which we shall take to be a cylindrically
symmetric crown, with fixed magnitude B and spatially
varying orientation n(8) =e, sing+e cosy, as depicted in

Fig. 1. Here e„and e- are radial and axial basis vectors
for a cylindrical coordinate system located at the point 8
on the ring. The parameter g describes the deviation of
the texture from the z axis, and will be referred to as the
tilt angle. Because of the cylindrical symmetry 3& may
be chosen to be independent of 0 on the ring. Of course,
the device causing the magnetic field on the ring will typ-
ically also cause a magnetic flux through the ring. The
Zeeman term yBn(8). B couples the spin and orbital
motion. However, for simplicity, we have omitted from
the H amiltonian any additional spin-orbit coupling
caused, for example, by the potential which confines the
electron to the ring. We point out that such conventional
spin-orbit coupling can also lead to a geometrical phase,
as implied by Meir, Gefen, and Entin-Wohlrnan, in the
context of a tight-binding model with spin-dependent
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hopping. It should be emphasized, however, that while

the texture on our ring does indeed couple the spin and

orbital motion, it does so through the Zeeman term.
We note, in passing, that the Longuet-Higgins model

of Jahn-Teller molecules bears a formal resemblance to
the present model, Eq. (I), but, of course, describes a

quite diferent physical system. ' However, in neither
the mesoscopic nor microscopic context has the issue of
persistent equilibrium currents due to Berry's phase been

previously addressed for systems described by Eq. (1).
The dimensionless equilibrium currents, which will be

computed in the canonical ensemble, are the charge

!
current (J ) =(pe —eaA~/c)/h and the spin current

!8;n(8),a) =!8)S!n(8),a) =!8)e'" 'e" (acos —g!e-,a) (2)

(J') =((pe —eaAe/c)8')/h, where ( ) =Z 'Tr( )
xexp( p—H), Z=Trexp( —pH) is the partition func-
tion at temperature T=I/pkq, and Tr denotes the
trace. '' For compactness, we shall write o for the iden-

tity operator in spin space so that we may assemble the
charge and spin currents together as (J")=((p~
—eaA /c)8")/Ii, with p =0, . . . , 3.

It will prove convenient to introduce the complete set
of states!8;n(8), a), with 0(8(2n and a=+1, satis-

fying 8!8;n(8),a) =8!0;n(8),a), and n(8) o!8;n(8),a)
=a!8;n(O, a), i.e. , simultaneous eigenstates of 8 and
n(8). 8. In terms of the more usual eigenstates!8) and

!e,a), of 8 and cr=, respectively, these eigenstates are
given by

+e" sin 2 g!e-, —a)) .

In order to have a single-valued basis under L9 0+2m, required in Berry s derivation, we impose periodic boundary
conditions on our wave functions. As a particular consequence, the parameter 6 is integral, although our final results

will turn out to be independent of the choice of integer.
Inserting complete sets of states, one sees that the equilibrium expectation value of the current operator J" can be

written in terms of the thermal propagator G(Of, af, O;, a;) as

i 2n +2m
(I")=—g dO; dOf(8;;n(8;), a, !1"!Of,n(Of), af)G(Of, af, O;, a;),

a„af
(3)

where G (Of, af, O;, a; ) is given by

G(Of, af, O„a, ) =(Of', n(Of), af!e !8„'n(0;),a, ).
To evaluate G(Of, af, O;, a, ) we construct a path-integral
representation in which the orbital and spin degrees of
freedom are decoupled, in the sense that the spin evolves

(in imaginary time) in the presence of an external mag-
netic field which depends parametrically on the path of
the orbital motion. ' This is achieved through a simple
extension of the standard technique' ' of inserting com-
plete sets of states at infinitesimally separated imagi-
nary-time slices. One then recognizes that the matrix
elements regroup to give a weighted average over Feyn-
man paths 8(r) of a spin propagator in the presence of a
8(r)-dependent magnetic field. Thus, after a little alge-
bra, one obtains the representation

G (Of, af, O;, a, )

~e(p) =ef A -s, [el
g(0) g

2) 8(ll (Of ),af!Ue(p)! n (0, ),a, )e

(5)
where the Euclidian orbital action So[0] is given by

ma ~~ . ~ . eaS [0] = dr 0(r)'- —i A dr 0(r),2h' "' C "0
and the subscript c indicates that the measure S,. O is

compact. " The spin propagator U~(p) describes the
evolution of the spin in the imaginary-time-dependent
magnetic field Bn(8(r)) and satisfies the Schrodinger-
Bloch equation B,U&(r) =yBn(8(r)) 8 Ue(r), with ini-

tial condition Ug(0) =I
To solve the problem of the motion of a quantum-

mechanical spin in the presence of the magnetic field

Bn(8(r)) we use the adiabatic approximation, ' valid

for large p, in the form studied by Berry and, subse-

quently, many others. In this approximation, a system

prepared in a nondegenerate eigenstate of yBn(8(0) ) a
evolves into the eigenstate of )Bn(8(p)) 8 with the
same quantum numbers, thereby acquiring two factors, a
dynamical one due to Zeeman splitting, exp(apyB), and

a geometrical one, exp[iaI (p)]. The latter factor occurs
because the usual adiabatic theorem does not determine
the phase of the final state. Thus, the spin evolution is

approximated by

Uq(P)!n(0;), a) =e'P" +" 'P'!n(Of), a), (7)

where the phase of the geometrical factor, i.e., Berry
phase, is given by

IP
ar(P) = —Im, dr(n(r), a! !n(r), a)

r P
=ay&(S), d. O(r), (8)

and the geometric flux pg(8) is determined in terms of
the tilt angle g as

p~(8) = —, (cosy —
1
—26) .

Equation (8) may be obtained by inserting the adiabatic
form, Eq. (7), into the Schrodinger-Bloch equation and
then using the explicit form of the spin eigenstates, Eq.
(2). Note that I (p) depends on the Feynman path "
0(r) which is not, in general, closed. ' As stated above,

Ae is independent of 0; we may therefore exchange it for
the (dimensionless) electromagnetic flux through the

1656



VOLUME 65, NUMBER 13 PHYSICAL REVIEW LETTERS 24 SEPTEMBER 1990

ring, p' = (ea/h c )Ae.
At this stage we convert the path integral for G, Eq. (5), into one over extended paths, '3's thereby introducing the

winding number v for each path. Following the method described in Chap. 23 of Ref. 12, we conclude that the thermal
propagator is given by

G(Of, af, O„a, ) = 6, , (rr/~2m)exp[a;PyB+i(8f —
0, )@(a„6)—rc (Oi —0;) /2]

&& Bq(~(a, ;6)+ rti rc (Of —0, );2rri x '), - (i 0)

a=+ 1 n= —~

—
P&n, a

with the efl'ective energy spectrum 6„,=(h /2ma-)[-n
—C&(a;0)] —ayB. This spectrum makes explicit the in-

terpretation of the geometrical phase as a spin-dependent
gauge potential. In the last step we have used the iden-
tity"

B,(.;t ) = ( it ) -'-exp(z -'/int) B3(z/t; —I/t ) .

Note that Eq. (11) reduces to the exact partition func-
tion when the tilt angle g vanishes.

The charge current (J ) can be expressed as
x 81nZ/8&™,and hence

where rc'=ma'/Ph' is a dimensionless parameter which
tmeasures the ratio of the thermal energy and the spacing

between energy levels for a free particle on the ring. For
a ring of radius 3000 A and a temperature of 10 mK, rc

is of order unity. We have introduced (i) the spin-
dependent (dimensionless) flux 4(a;8) =p' + a&~(8),
which combines the usual electromagnetic contribution
and the purely geometrical Berry phase; and (ii)
B3(z;t) =g, . = exp—(irrtv +2ivz), the Jacobi theta
function. '

We now use the thermal propagator to compute the
partition function, currents, and magnetization. The
partition function is given by

21'

Z = g dOG(O, a;O, a)a=+]"o

=J2mc g e t'"B)(rre(a;0);2rria')-

given by (0 ) =Z ' cosy', „ae "', while the other
two components (cr'-') vanish. Finally, the extension to
many noninteracting electrons amounts to replacing
Z 'exp( —P8„.) by the normalized Fermi distribution
in the above formulas.

We now discuss the charge and spin currents and
magnetization in the low-temperature limit, which we in-

dicate by the subscript 0. The charge current reduces to
the sawtooth function (J )p= '[4(1;0)], where bbj =@
—[4+ —], and [@] is defined to be the largest integer
less than or equal to @. Similarly, for the spin current
we find (J )p= ——,

'
sin g —t@(I;0)}cosy, and for the

magnetization (8')p =cosy. Recall that @(I;0) depends
on g, as shown by Eq. (9). It is interesting to note that
the low-temperature limit of the spin current can also
be written in the following form (J o )p =(J )p(rr')p
—

& sin g. The last term in this equation, which is due
to the geometrical phase, makes explicit the significance
of the correlation in the quantum-mechanical fluctua-
tions of cr' and pg

—eaAe/c induced by the effective
spin-orbit coupling. In particular, note that when

g=rr/2 the magnetization component (8 ) =0. Despite
this, as a consequence of the eA'ective spin-orbit coupling
generated by the geometrical phase, the spin current
does not vanish: fluctuations which produce a positive z
component of spin and a negative z component of orbital
angular momentum (or vice versa) give a larger contri-
bution to the partition function than those with parallel z
components.

(J ) =—g [n —4(a;0)]e-o
~

—P("„a

Z a, n

(i 2)

From Eqs. (3) and (10) we see that the spin current is

given by

(J )+ —, sin-'g=x cosy lnZ

=cosy —g a [n —e(a;0) ]e
1 P~., a

Z a, n

The other two components of the spin current (J ' ) van-

ish. Note that physically observable quantities are in-

dependent of the integer 6', and that the charge current
vanishes whenever @(a;0) is integral or half integral.
This is the case, e.g. , when p' =0 and g=rt/2. Also
note that under the latter conditions the spin current
reduces to ——'. The dependence of the spin current on

g and p' is depicted in Fig. 2. The magnetization is

02

(JA

—C].

FIG. 2. Spin current (J') as a function of tilt angle g
and electromagnetic flux @" for 8 =50 G, T =

1 m K, and a
=3OOO A.
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We now make the additional restriction to small tilt

angles, g«1 and, for simplicity, we shall also assume

that p' is integral. Then, to quadratic order in g, we

find that for the spin magnetization (rr )o= I —jl2, and

for the charge and spin currents (J )o= —(J )Q g /4.
We have concentrated on the equilibrium properties of

textured rings in order to display persistent currents.
For integral p', these currents can be thought of in the

following way: (i) The field causes paramagnetic align-

ment of the spin; (ii) the geometrical phase induces an

eff'ective coupling between the spin and orbital angular
momentum such that nonzero orbital angular momen-

tum is preferred, causing a charge current; and (iii) the

spin current is dominated by quantum fluctuations, as

described earlier. There is also an intriguing Aharonov-

Bohm-type interference phenomenon associated with

real-time propagation which can be simply derived fol-

lowing the scheme presented here; we shall discuss this

and related issues in a forthcoming publication. Besides

making an experimental search for the eA'ects described
here in mesoscopic normal-metal rings, e.g. , using NMR
spin-echo experiments, it would also be interesting to
look for analogous mass and spin currents in the Fermi-

liquid regime of normal He in a mesoscopic ring. As

the quasiparticle excitations in this regime carry spin but
no charge, persistent currents should arise purely from

the geometrical phase.
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