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Role of the Exchange Interaction in the Short-Time Relaxation of a High-Density Electron Plasma
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We incorporate the exchange interaction into a simulation in which all electron motion, including that
involved in screening, is treated explicitly with a molecular-dynamics simulation run concurrently within
an ensemble Monte Carlo treatment of scattering. Exchange is treated for the first time in such an ap-
proach by a semiclassical modification of the molecular dynamics which takes full account of the Fermi
statistics, and in particular does not violate the exclusion principle. A comparison is made with the

short-time relaxation data of Becker et al.

PACS numbers: 71.45.Gm, 03.65.Sq. 71.10.+x, 78.47.+p

The development of laser-pulse compression tech-
niques has provided a technique to examine nonequilibri-
um electron distributions on time scales of a few tens of
femtoseconds. In the standard pump-and-probe experi-
ments used to study this regime, a short initial laser
pulse creates a nonthermal electron-hole plasma; this
“pump” pulse bleaches the absorption. By using a
second, “probe”’ pulse to monitor the absorption, one ob-
serves the subsequent thermalization of the plasma. Re-
cently, Becker et al.' used femtosecond photon-echo
techniques to probe the electron-electron scattering re-
laxation process in dense electron-hole plasmas in semi-
conductors. Most recently, such fast laser excitation
studies have focused on the high-density regime.? In this
high-density regime, one cannot ignore the uncertainty
principle. However, this is not the case in the short-time,
low-density regime, which could be modeled effectively
by using a single-particle picture of electrons which ig-
nored the Fermi character of their statistics.® That is,
one could choose a position uncertainty small compared
to the interelectron length r;, so the single-particle po-
tential was well defined, and simultaneously leave the
momentum well defined. These facts justified an ensem-
ble Monte Carlo (EMC) approach based on classical
electron motion interupted by phonon interaction
events. These EMC simulations could be coupled
effectively with exact treatment of the Coulomb interac-
tion between carriers using a molecular-dynamics (MD)
approach.” Numerical values of the energy- and
density-dependent thermalization times for the various
carrier-carrier and carrier-phonon processes have been
worked out theoretically, and agree with the experimen-
tal data at low density. %8

Because of the high electron excitation energies occur-
ring in these systems, it is difficult to find analytical
treatments of screening which properly describe the non-
trivial temporal and wave-vector dependences of the
screening. To overcome this difficulty, joint molecular-

dynamics and ensemble Monte Carlo simulations provide
a real-space treatment of the Coulomb interaction and
avoid such problems.’ In this approach, individual elec-
trons interact through a Coulomb interaction which is
screened only by the high-frequency (valence-electron)
dielectric constant. The remaining part of the screening,
due to the conduction electrons, arises explicitly from the
combined motion of the individual simulated electrons.

At densities near 10' cm ™3 which can now be
achieved routinely, there are strong theoretical and ex-
perimental® grounds to expect that many-electron effects
will be important. In principle, these higher densities
may be modeled by fully quantum-mechanical descrip-
tions which are well understood. In practice, however,
the far-from-equilibrium distributions are prohibitively
expensive to study numerically, and accurate analytical
approaches are not yet available even in the semiclassical
limit. A desirable alternative, therefore, is to extend the
existing Monte Carlo approaches into the slightly degen-
erate regime. This has the added advantage of retaining
a picture which is accessible to (classical) intuition.

The incorporation of the exchange-energy interaction
into such a nearly classical approximation is the subject
of this Letter. The method we describe below incorpo-
rates the exchange interaction among electrons, and de-
scribes an electron distribution which satisfies both the
exclusion principle and the uncertainty principle while
obeying a set of equations of motion which resemble
those of a classical electron gas. The need to satisfy the
uncertainty principle gives rise to corrections to the usual
Coulomb interaction. Finally, we test the new approach
by simulating the bulk GaAs system studied experimen-
tally by Becker ef al.,! finding that the new terms tend to
decrease the discrepancy between the experimental re-
sults and the classical Monte Carlo results that were pre-
viously found at high density.

In practice, semiclassical (EMC) approaches treat the
electrons as having both a well-defined plane-wave
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momentum and a well-defined position. To go beyond
this approximation, we make an explicit choice of wave
packets, which serve as the basis for a more rigorous
quantum description. To preserve as much as possible
the classical picture, we choose minimum-uncertainty
wave packets

0:(r)=0¢(r—x;,p,)
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This packet describes an electron localized about position
X, with uncertainty o and about momentum p, with un-
certainty h/2c. When the interactions among electrons
can be ignored, and when the external potentials vary
slowly, the value of o does not enter explicitly into the
equations of motion. One then recovers the classical
equations of motion. This is roughly equivalent to mak-
ing the approximation (V¥ (r))=(VF¥)(r) in Ehrenfest’s
theorem. At the high densities we study, however, ex-
change gives rise to momentum-dependent forces which
make a large value of o preferable. In this situation, o
will appear explicitly, and we shall need to determine a
particular value for it.

We can use packets of the form (1) as the basis for an
expansion of the many-electron system:

a,=fd3r¢*(r—x,,pi)w(c,,r), (2)

where y(o;,r) is the field operator which annihilates a
particle of spin o; at the point r. For any single fixed
value of o, if (x,,p,) is allowed to vary over all phase-
space points, then a, generates an overcomplete basis for
describing the electron system. In the spirit of single-
particle semiclassical approximations, we represent the
many-electron system by a combination of wave packets:
|[w)=afal---af|), where |) is the “vacuum™ of the
unexcited semiconductor conduction band, so {(xi,x»,
.. .,xN.l\l') is a Slater determinant wave function. In the
independent (or single-) electron approach, x and p=hk
represent the position and momentum of a particular
electron. In the present approach, on the other hand, the
parameters x, and p, do not represent the position and
momentum of the ith electron. Instead, they represent
the ith phase-space region near which an electron may
be found. In this way, there is no conflict between the
quantum-mechanical identity of the electrons and the ex-
istence of distinct positions and momenta. Classically,
the nonidentity of the electrons is based simply on the
possibility of following their smooth trajectories exactly.
For simplicity, we will derive the equations of motion
for a single parabolic band of mass m. We use a
Coulomb potential V(r—r') =e?/4rne|r —r'|, with ¢ tak-
en to be the high-frequency dielectric constant. Using
this potential, the second-quantized Hamiltonian %#
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yields an energy H ({o,,x;,pi}/= ) =(¥|#|¥). This ener-
gy is composed of kinetic-energy, direct Coulomb, and
exchange-interaction parts:

H=EK+ED+EA\/(*, (3)
Ex=—1(pi+pi+ - +ph)+ - (42)
2m 8mo-
Ep=52XV.(x,—x;), (4b)
1#]

Exc=— 12X 8(c1,6))V,(lp; —pil/h)Ac(x; —x,), (4¢)

1)

where A,(x) =(4r0?) ~¥2exp(—x*/40?), and 8(ay,0,)
is a Kronecker delta. The potential

Vo) = [dr v a+x)a,(0) s)

is a coarse graining over a length scale o of the Coulomb
potential, while

Va(k)=fd3r V(r)e'k t-r/do? 6)

We can incorporate exchange effects in the joint MD
and EMC simulation described earlier by deriving new
semiclassical equations of motion from the Hamiltonian

(3):

dp; OH _ = p. v
— =T = i + 1 iXC ¢
o ox, ,Z‘T F/ j; 5(o,,0))F)C, (7a)
(1)) (=)
dxl _ oH _ Pi i
a o m ,2—:1 6(0,,0,)G,, (7b)
(i=j)

where we have written out the form of the terms that
arise from (4).

As is clear from (4), the equations of motion involve
the packet size o explicitly. For a parabolic band, the
o-dependent term in the kinetic energy clearly does not
affect the equation of motion. This term is the energy
cost of confining electrons in finite-size packets. It is
necessary in order to satisfy the exclusion principle in a
finite-density system. The gradient of the direct
Coulomb interaction (4b) gives rise to the F? force term
in (7a), which depends only on the position parameters.
For interparticle separations much greater than o, F?
approaches the classical Coulomb potential. In order to
maintain a picture as close as possible to the classical
one, we would like the direct Coulomb force to act be-
tween essentially pointlike particles, and so we will want
o<<r;.

The exchange interaction is more complex than either
the direct interaction or the kinetic energy; it depends on
every parameter in the problem and contributes terms to
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both (7a) and (7b):

F,’}(C=I}o(kj_ki) %Ac(xj——x,») , (8a)
G, =—G, =3Pk, —k) |a,(x; —x,). (8b)
1 N n | ok, o\K, i o\X; /.

The second quantity plays a role in the position time evo-
lution (7b) which is essentially that of a density-
dependent effective-mass term. In precise contrast with
the direct interaction, the appropriate limit for comput-
ing the exchange energy is o— oo. This can be seen
most clearly for spatially homogeneous systems (which
include the one we treat here). Confining the electrons
in a large box of volume V, we ignore correlation by as-
suming that the spatial and momentum factors in (4c)
can be averaged independently. The homogeneity as-
sumption then leads to

N
E/\'C=L Z 5(0’,’,0’1 (9)

Viji=i
(=)

y—<¢
28|k,'_kj|2 ’

which is the exact exchange energy (ignoring correla-
tion). In the limit =0, the exchange energy given by
(4c¢) is zero.

It is clear from the foregoing discussion that no single
value of o can yield an accurate value for both the direct
Coulomb and the exchange forces. That is, the value of
o selects a class of basis states, in which either the ex-
change or direct energy is well defined, and thus suscep-
tible to a classical approximation. One seeks a
compromise o value which treats both interactions with
acceptable accuracy. There is no unique or best way to
do this. The approach we have adopted is to compute
the exact exchange energy for the initial distribution us-
ing (9), and choose o to minimize the difference between
this “exact” result and our o-dependent approximation.
Our initial distribution is uncorrelated by definition, so
(9) is exact, and our approximation (4c) approaches this
exact value. The differences, and justification for this
approach, will be discussed in a subsequent paper. The
resulting o value has to be computed separately for each
density. This o is small at low densities, rising to a con-
stant value of == 18 A above densities of 10'® cm ~3; for
thermal rather than photoexcited electrons, these are the
densities at which the semiconductor simulated (GaAs)
becomes strongly degenerate at room temperature.

We have performed EMC and MD simulations to
model the femtosecond photon-echo experiments of
Becker et al.,' performed in bulk GaAs. The simulations
evolved an ensemble of 2000 electrons initially excited
from three valence bands (heavy- and light-hole bands,
split-off band) into the T valley of the conduction band.
The initial distribution of carriers was determined explic-
itly from an excitation pulse energy of 2 eV, with
thermal broadening at a lattice temperature of 300 K

taken into account. Parameters such as valley masses
and deformation potentials were taken from other mea-
surements where possible,>®!® and consistency with ab
initio calculations has also been found.” Holes were
neglected, an approximation that is justified at short
times by the holes’ higher mass. '

In these earlier studies, we have found that the time
constants determined from the photon-echo experiments
agreed well with the results of our joint MD and EMC
simulations at low densities. With increasing density,
the experiments (crosses in Fig. 1) exhibited an approxi-
mate power-law decrease of the time constant. In con-
trast, the simulations (triangles in Fig. 1), showed a knee
between 10'7 and 10'® ¢cm ~3, with the time constant
varying slowly at the lower densities, and falling off rap-
idly at the higher densities. The low-density behavior
simply reflects the dominance of phonon-scattering pro-
cesses, while strong density dependence in the comple-
mentary regime reflects the dominance of electron-
electron scattering at high density. In the range of den-
sities below ~2x10'® cm 73 the experimental and
numerical-simulation data were consistent. At higher
densities, however, the experimental time constant was
systematically larger than the simulation.

Using the formalism described above, we have includ-
ed exchange corrections (circles in Fig. 1). It is clear
that inclusion of exchange signficantly improves the
agreement between experiment and simulation at high
densities. At the low densities, where both the electron-
electron interaction and the exchange corrections to it
are small, the previous simulations remain valid.

We can understand qualitatively why exchange in-
creases the time constant at high density by considering
the momentum time-evolution equation (7a). The dom-
inant term on the right-hand side of (7a) is the Coulomb
force. The main correction to this force is a cutoff of the
force at small (JAr| <o) interelectron spacings. This
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FIG. 1. The relaxation time constant for scattering of car-

riers out of the initial excitation volume in momentum space.
The crosses refer to the data of Becker er al. (Ref. 1); triangles
are calculations ignoring the role of exchange, and circles in-
clude this effect through the method described in the text.
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corresponds to the well-known “exchange hole” which
arises from the Puali exclusion principle. A second effect
arises directly from the exchange energy: In equilibri-
um, the exchange energy of a homogeneous electron gas
is an integral of the density distribution with a strictly
negative kernel, so the exchange interaction is attractive.
That is confirmed by the form of the exchange force
(8a). The potential ¥,(k) given by (6) is strictly posi-
tive, so the exchange force acts in a direction opposite to
the direct Coulomb force, partially canceling it in the
short-range region where it is strongest.

The authors are indebted to K. S. Yi and W. P6tz for
useful discussions. This work was supported in part by
the Office of Naval Research.
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