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Constrained Relaxation and the Glass Transition in KBr t — -KCN„
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Using a model based on the theory for hierarchically constrained relaxation of Palmer et al. , it has
been possible to account for the quadrupolar freezing of the CN ion in KBr-KCN alloys observed in both
Brillouin scattering and low-frequency shear resonance. In particular, the small change in the glass
transition temperature with probe frequency can be accounted for.

PACS numbers: 64.70.Pf, 61.42.+h

The relaxation of anisotropic defects in a crystalline
matrix can be of two limiting distinct kinds depending on
whether the energy barriers are independent of the de-
fect configuration or whether these barriers are deter-
mined by the configuration. In the former case, if the
sample is cooled from an elevated temperature, the re-
laxation rate simply goes smoothly to zero as the temper-
ature goes to zero. In the latter, the relaxation rate
slows rapidly when the thermal energy kT is on the order
of the interaction energy, and may go to zero at some
finite temperature. It can lead to an orientational glass
phase of the defects.

The alloys of KCN with other alkali halides provide a

particularly interesting system because the CN ion actu-
ally plays both roles: The CN ion has both an electric
dipole moment (referred to here as the "dipole" ), and an

elastic moment, often referred to as an elastic "quadru-
pole" moment (which we will call the "quadrupole" ).
An electric quadrupole moment also exists, but is usually
neglected. It is generally agreed that the elastic quadru-
polar interactions are responsible for a glassy phase at
concentrations I between about 0.2 and 0.6.

At temperatures below the glass transition tempera-
ture it is believed' that the dipoles are free to "flip, "
head to tail, leading to strong dielectric relaxation phe-
nomena. ' The dielectric relaxation peak is very broad in

frequency. Its temperature and frequency dependence
are fitted very well by a Gaussian distribution of energy
barriers' which neglects any interaction between the
dipoles. The barriers responsible for the dielectric relax-
ation are provided by the elastic interaction between the
CN ions, i.e., the quadrupoles. Although the behavior of
the dipoles can be explained, at present no model exists
for the relaxation and freezing of the quadrupoles.

The relaxation of the quadrupoles is evident via their
broadening of acoustic phonons, and in torsion-
pendulum results. The torsion-pendulum results, repro-
duced in Fig. 1, show two peaks in the temperature
dependence of the internal friction. The lower-
temperature secondary peak has been associated with di-

pole relaxation, while the higher-temperature primary
peak is due to the quadrupoles. Ultrasonic results do not
reveal the attenuation because the echoes are lost for the
concentrations of interest here. However, Brillouin data
clearly show a strong broadening which is large enough
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FIG. 1. The temperature dependence of the internal friction
for a concentration of 0.53 determined by Knorr, Volkmann,
and Loidl (Ref. 6). The solid line was calculated as described
in the text.

to be easily measured. The width of the phonon in-

creases to a sharp maximum at a temperature Tg
which is slightly lower than that of the minimum in the
velocity of sound; see Figs. 2 and 3.

What is particularly interesting is how little the tem-
perature of the quadrupole peak Tg changes for a change
in frequency of 6 orders of magnitude: For x =0.5, Tg is
78 K from Brillouin data, whereas from the torsion-
pendulum results Tg is 68 K. The dipole peak, on the
other hand, moves from about 70 to 38 K.

This behavior is characteristic of a glass transition: As
the temperature is lowered interactions become increas-
ingly important, and, in order to relax, a quadrupole
must overcome the barrier imposed by its neighbors.
The temperature at which this occurs is determined more
by the strength of the quadrupole interaction than the
frequency of measurement.

The purpose of this Letter is to show that a model
based on the theory of hierarchically constrained relaxa-
tion of Palmer et al. ' cannot only account for the quad-
rupole relaxation, and can fit the data in Figs. 1-3, but
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FIG. 2. The temperature dependence of the phonon width

determined by Hu, Vanderwal, and Walton (Ref. 5) for a con-
centration of 0.5. The solid line was calculated as described in

the text, with the same parameters as used for the solid line
sho~n in Fig. 1.
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also results in a distribution of barrier heights in agree-
ment with that used to fit the dielectric data.

The quadrupolar results also show a peak due to the
dipolar relaxation. While it is a little surprising that the
dipole transition should couple so strongly to the elastic
properties the secondary peak is not of interest here, and
we will simply fit it by the dielectric function appropriate
to the frequency of measurement.

Elastic properties are conveniently described in terms
of a complex elastic compliance J such that the velocity t.

of a sound wave of frequency co is given by the real part,
and its attenuation a by the imaginary part:

I/t —ia/ro =[p(ReJ+i ImJ)] 't . (I)
In general, the compliance J measures the strain pro-

duced when a stress is applied. There is an instantane-
ous response followed by a slower change as the system
relaxes. If the system has a single relaxation time r,

J(t) =Jo+BJll —e (2)
In this expression Jo accounts for the instantaneous
strain, and the second term accounts for the subsequent
relaxation.

Often, there is a spectrum of relaxation times. In that
case Eq. (2) becomes

J(t) =Jo+QSJ„e "".
n

In the frequency domain, the Fourier transform yields

J(ru) =Jo+g SJ„/(I —iror„) . (4)
n

If there is only one relaxation time, the fact that the
velocity of sound is proportional to the real part, and the
attenuation to the imaginary part, can be used to esti-
mate BJ and obtain the relaxation time. If this is done
with the data shown in Figs. 1 and 2, it is found that the
relaxation of the CN exhibits Arrhenius behavior at high
temperatures, suggesting that a single-relaxation-time
approximation is valid. But at lower temperatures, just
above Tg it is found that the temperature dependence of
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FIG. 3. The temperature dependence of the phonon width
determined by Hu, Vanderwal, and Walton (Ref. 5) for a con-
centration of 0.35. The solid line was calculated as described
in the text.
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FIG. 4. The reciprocal relaxation time deduced from the
data in Figs. 2 and 3 assuming a single relaxation process. The
solid circles represent experimental results for a concentration
of 0.50, and the open circles 0.35. The dashed line represents
the relaxation time of ions with no neighbors as described in
the text for 0.50, and the solid line for 0.35.
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the relaxation time leads to a high value for the activa-
tion energy and an unphysical magnitude for the preex-
ponential, suggesting that more than one CN is in-
volved. These results are shown in Fig. 4. In order to
describe the relaxation at these temperatures it is neces-
sary to employ a theory which will be able to take the in-
teractions into account.

Such a theory was provided by Palmer et al. ' It pos-
tulates an assembly of N Ising spins distributed over a
number of levels such that each spin in level n+1 is only
free to change its state if p„spins in level n attain one
particular state of their 2" possible ones. The relaxation
times in the theory of Palmer et al. are related by

&n+1 2 &n ~ (s)
leading to

gn —'rom
w+k =Qk k
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The Palmer-Stein-Abrahams-Anderson (PSAA) mod-

el is abstract, and does not specify any model for the lev-

els of the system, except the requirement that spins in

one level constrain spins in the level immediately above
it. The CN ions constrain neighboring CNs via their
elastic strain fields; so, it is logical to associate the levels
with the number of near neighbors. Crudely, a CN with,

say, six nearest neighbors cannot relax until p~ CNs with

five nearest neighbors have relaxed. In turn this implies
that those spins with fewest neighbors relax first, and
those with the most relax last. This model neglects any
"jumps" in the hierarchy, i.e., a situation in the above
example where some of the spins constraining the level-6
CN have less than five nearest neighbors.

The PSAA theory implies that some short-range
correlation exists between the spins, i.e. , that the temper-
ature is below some ordering temperature. At high tem-
peratures, the constraints must disappear, and a single
relaxation time recovered.

The CN can take up various possible orientations in

the unit cell, and the Ising model is not appropriate. For
instance, the molecule could be oriented along one of the
six possible (110)directions, and, because the molecule is

not perfectly symmetrical, there may be an elastic in-

teraction when the CN flips head to tail, leading to
twelve possible configurations. Thus p„spins have p""
possible states where p can be 12, corresponding to
orientation along a (110) axis, 8 if the CN lies along a
(111)axis, or 6 for a (100) orientation. Of course, other
possibilities exist, but for simplicity s sake these will be
the only ones considered.

The first spins to relax are those in level 0, which have

eA'ectively no nearest neighbors, but will have next-

nearest neighbors, next-next neighbors, etc. Their relax-
ation time is ro. Next, those in level 1 relax, and their
relaxation time will be T:[ =p"'io, where po is the average
number of spins in level 0 which must relax for one spin
in level 1 to relax. It is, of course, inconsistent to postu-
late a spin in level 1 constrained by interacting with a

spin in level 0 which has no nearest neighbors. However,
the interaction is long range, and the further neighbors
are also important. To account for this approximately
the discrete distribution will be replaced by one that is

continuous. The level-0 spins can then be interpreted as
those that are only constrained by some minimal average
field. Following the argument in PSAA outlined above,

~n =p ~n —[ ~

To proceed further, the dependence of p„on n is re-

quired. Assume that elastic strain fields from the neigh-

bors deepen the potential well in which the spin finds it-

self. Therefore, at T=O, if roughly one-half the neigh-

bors flip, their efTect will disappear, and the barrier
height wi11 be approximately equal to that for a spin with

no nearest neighbors. At T=O,

p„=(n+ I )/2.

At finite T some of the neighbors will have flipped via

thermal activation and this will reduce p„. Thus

p„=[(n+ 1)/2) F(T)
and

(8)

where A is an arbitrary constant.
First, the torsion-pendulum results shown in Fig. 1 will

be fitted. The points are the data; the solid line was cal-
culated as follows:

We assume that the secondary peak is due to dipole
relaxation; its amplitude is given by De", where D is a
constant and e" is the imaginary part of the dielectric
constant. Ernst et al. '-' find that a log-normal distribu-
tion accounts well for the dielectric relaxation,

e = (eo e ) W ' exp I
—[(log) Dc' log) Oct)& )/W j I, (14)

and we use cu„=2x 10 e "/ and 8'=110/T —0.6.
These parameters are within the range of those deduced

by Ernst et al. ,
" and those employed by Eisele' for a

T = 7
a —o~k n(n+ 1)F(T)/2 (9)

Substitution of the above equation into Eq. (4) yields

J(co) =Jo+g $J /(I ccc)ropn(n+ l)F(T)/") (10)

The simplest way to specify F(T) is with mean-field
theory. Below some temperature T,

F(T) =(1-T/T )'" (»)
If T )T„F(T)=0, which has the effect of removing
the constraints at high temperatures. T,. should be a
function of the number of neighbors, but in view of the
approximation already present in using mean-field
theory, this dependence will not be introduced here.

It is necessary to specify BJ„: Assume that each CN
contributes an equal amount BJ, so that

c)J„=(N„/N )b'J, (i 2)
where N„ is the number of CN ions in level n (i.e. , with

n nearest neighbors). N„ is approximated by a Gaussian
distribution about the most probable number of neigh-
bors. This distribution must be the same as that used to
fit the dielectric relaxation results, and we require that
the ratio of the mean value to the standard deviation be
the same in both cases. Values between about 2.5 and 3

are quoted in the literature. ' The fit is not overly sensi-

tive to the value chosen, but 3 appears to work well.

Palmer et al. , arguing that n is large, replace the sums
over n by integrals. Zwanzig' evaluated the sums and
has questioned the accuracy of the results; however, Pal-
mer et al. , in their Reply, '' argue that the integral has
greater physical significance, and that the sum is only a
device to introduce the model.

In our case the maximum number of nearest neighbors
is not large; it is in fact twelve. However, we assume
that the eAect of the longer-range interactions with the
more distant neighbors has the eAect of making the lev-

els closely spaced and numerous; so we also replace the
sum by an integral,

~12
J(~) g dn e

—((n —)'i)/4il' -(I c~r / (T)n(n+ ()/4)'
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frequency of 700 Hz. D is left as an adjustable constant.
We now consider the primary peak, due to elastic re-

laxation. Using Eq. (13) above, with

2 x 10 13 350/T (I S)

(this equation is plotted as the dashed line in Fig. 4),
81.5 K for T, , and 12 for p, the solid line in Fig. 1 was
obtained. It was not possible to fit the torsion-pendulum
data with p equal to 8 or 6.

Next consider the Brillouin data for x=0.5, shown in

Fig. 2. The solid line was calculated with the same pa-
rameters. 3 and D were again adjustable constants.

The Brillouin data for the x=0.35 sample were fitted
with the results shown by the solid line in Fig. 3. The
parameters for the dielectric contribution were co„
=2x10' e ' i and W=100/T. Changes in the pa-
rameters for the quadrupolar relaxation from preceding
fits were T, =70 and 300 K for the activation energy for
rp. With this value of the activation energy, Eq. (15)
yields the solid line in Fig. 4. The calculated values drop
somewhat more sharply with temperature on the high-
temperature side of the peak than the experimental data,
but the fit is still within experimental error. If T, is al-
lowed to vary with n, the fit is much improved.

At temperatures below the glass transition tempera-
ture, the frozen distribution of quadrupoles should yield
a distribution of barrier heights which is consistent with
that deduced from the dielectric relaxation: In mean-
field theory the average contribution of the nearest
neighbors to the barrier is 3T„ thus the most probable
barrier height would be 636 K for the 0.5 sample, which
agrees rather well with previous reports. ' It is 510 K for
the 0.35 sample. The width of the distribution was as-
sumed from the outset to be in agreement. In fitting the
dielectric data it is necessary to use a temperature-
dependent width, and sometimes a temperature-depen-
dent barrier height. Equation (13) yields an eff'ective

temperature dependence for these quantities because the
lower barriers will not be frozen in position at the higher
temperatures. However, the structure of the equation is

such that it has not been possible to demonstrate a
correspondence with the dielectric relaxation models.

Using the theory for hierarchically constrained relaxa-
tion of PSAA it has been possible to account for the tem-
perature, and concentration dependence of the quadrupo-
lar relaxation time of CN in KBr at temperatures above
and below the glass transition temperature, and for con-
centrations in the glass-forming range. Only the imagi-
nary part of the elastic constant has been considered
here. The real part, of course, is also aAected by the re-
laxation. Michel' has shown that the rotational modes
of the CN ion couple to the translational modes of the
lattice, leading to a strong softening of the C44 elastic
constant, and his theory agrees very well with experi-
ment. This can take place whether or not a direct in-
teraction exists between the defects such as has been

considered here. Michel's mechanism, therefore, yields a
change in the bulk elastic constants, to which should be
added the changes in the real part provided by the model
introduced here, The results of such a calculation will be
presented in a future publication. '

Finally, it should be mentioned that it is possible to
obtain an average CN relaxation time from Eq. (13).
This was done in an earlier version of this work, and the
results reproduced the data in Fig. 4. Measurement of
the CN relaxation rate in NaC1-CN alloys using NMR
(Ref. 16) reveals similar behavior to that shown in Fig.
4, and the analysis presented above also accounts for
these data. Space does not permit any further discussion
which wil1 be left for another publication. '

This research was supported by a grant from the Nat-
ural Sciences and Engineering Council of Canada. It is
a pleasure to acknowledge fruitful discussions with G. P.
Johari and A. J. Berlinsky. A major portion of this
Letter was written during a visit to the Institut fur Phy-
sik at the Johannes Guttenburg Universitat in Mainz,
West Germany, whose hospitality is gratefully acknowl-
edged. It is also a pleasure to acknowledge fruitful con-
versations with K. Knorr, A. Loidl, and R. Bohmer.

'N. O. Birge, Y. H. Jeong, S. R. Nagel, S. Battacharya, and

S. Sussman, Phys. Rev. B 30, 2306 (1984).
2J. P. Sethna and K. S. Chow, Phase Transitions 5, 317-340

(1985).
M. Meissner, W. Knaak, J. P. Sethna, K. S. Chow, J. J.

De Yoreo, and R. O. Pohl, Phys. Rev. B 32, 6091-6093 (1985).
4J. J. Vanderwall, Z. Hu, and D. Walton, Phys. Rev. B 33,

5782 (1986).
~Z. Hu, J. Vanderwal, and D. Walton, Phys. Rev. B 38,

10830 (1988).
K. Knorr, U. G, Volkmann, and A. Loidl, Phys. Rev. Lett.

57, 2544 (1986).
7R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Ander-

son, Phys. Rev. Lett. 53, 958 (1984).
A. S. Nowick, in Physical Acoustics, edited by W. P.

Mason and R. N. Thurston (Academic, New York, 1977), Vol.

13, p. 3.
P. W. Young and J. F. Scott, Phase Transitions 6, 175-234

(1986).
'PR. Zwanzig, Phys. Rev. Lett. 54, 364 (1985).
''R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Ander-

son, Phys. Rev. Lett. 54, 365 (1985).
' R. M. Ernst, L. Wu, S. R. Nagel, and S. Sussman, Phys.

Rev. B 38, 6246 (1988).
' B. Eisele, Diplomarbeit, Johannes Guttenberg Universitat,

Mainz (unpublished).
'4K. H. Michel, Phys. Rev. Lett. 57, 2188 (1986); Phys. Rev.

B 35, 1405 (1987); 35, 1414 (1987).
'~D. Walton (to be published).
' S. Elschner and J. Petersson, Z. Naturforsch. 41a, 343

(1986).

1602


