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Inhomogeneous Growth Processes
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It is proposed that inhomogeneities in the deposition rate can be a powerful tool for investigating prop-
erties of growing films. The macroscopic shape of the resulting surface deformation is discussed analyti-
cally for the growth equation proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)l.
Computer simulations for a single-step growth model confirm the predictions based on this equation and

give explicit values for its parameters. It is argued that inhomogeneous deposition also provides a new

method for measuring the roughness exponent.

PACS nUmbers: 68.55.—a, 05.40.+j, 05.70.Ln, 68.90.+g

If particles are deposited onto a substrate, the surface
of the growing solid film will, in general, be rough due to
fluctuations in the deposition rate. Such kinetic roughen-
ing' is usually stronger than the one due to thermal fluc-

tuations alone; i.e., the roughness exponent g is larger
under growth than in thermal equilibrium. Starting
from a flat surface, one typically encounters a power-law

dependence of the height-height correlation function

(lh(r, t) —h(0, t)l'-) —Irl f(r/t '

where the scaling function f expresses that a time
t —lrl' is needed until the roughness on a given distance

lrl is fully developed.
Though the scaling behavior (1) is one of the funda-

mental features of a growth process, and the values of
the exponents provide an ultimate test to concepts like

universality, it has proven difficult in many situations to
measure these exponents directly. This may be due to
the strong crossover effects during the early stage of
growth, or simply to the lack of a good experimental
method. It is thus of practical interest to study other
features of the problem which can be tested independent-

ly.
Identifying relevant phenomenological aspects is also

of considerable theoretical importance. Like the Ginz-
burg-Landau approach to critical phenomena, a coarse-
grained description of growth processes should yield a
continuum theory with a few parameters which in

essence represents the universal features responsible for
the asymptotic scaling. In general it is dif5cult to derive
such a continuum theory from a microscopic model. Ed-
wards and Wilkinson illustrated the procedure for their
model of sedimentation. However, for more complicated
models it is a fruitful strategy to devise the continuum

theory simply on grounds of symmetry and other phe-
nomenological aspects. In this way Kardar, Parisi, and

Zhang (KPZ) were led to the following equation:

rlh/Qt = vV h+v+ tl,

face,

and ri is the white noise due to fluctuations in the growth
rate. The Laplacian term is frequently misinterpreted as
describing surface diffusion (which actually leads to a
fourth-order derivative of h). Without explaining its
microscopic origin this term was introduced phenomeno-
logically as the simplest way to express a smoothing
effect on the surface.

A phenomenological theory can be put to the test by
measuring the system's response to externally controlled
perturbations. For instance, the elasticity theory of a
solid can be verified through a strain experiment. In this
Letter we propose inhomogeneous growth as a general
method for the experimental verification of phenomeno-
logical growth theories. Spatial inhomogeneities will in

general induce a macroscopic deformation of the average
surface profile. We show that measurement of this
profile pro~ides a test to assumptions such as (3), and
yields values for the phenomenological constants. We
examine the effect of surface fluctuations on the average
profile, and present an example where the roughness ex-
ponent g can be determined without actually measuring
the height-height correlation function or the surface
width.

For simplicity we consider the case where the deposi-
tion rate

tc = tea+ tci Z ~(x L/2 —nL) (4)

is uniform everywhere except on regularly spaced paral-
lel lines along the substrate. One then expects that the
noise-averaged profile H(x, t) =(h(r, t)) depends only on
the coordinate X.

To illustrate the idea, we discuss in detail the phenom-
enological growth equations (2) and (3). It follows from
these equations that H(x, t) should satisfy

where the growth velocity depends on the tilt of the sur-
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while the fluctuations 6h =h —H obey

= vV 'Sh-+) H'&h'+ (—1»h I-' (—IVah I

'))-+ n
2

(6)
Here a prime denotes a partial diflerentiation with

respect to x. With (4), Eq. (5) can be alternatively for-
mulated as a boundary value problem in the region

Ix I
(L/2 with

H(L/2, t) =H( —L/2, t), (7a)

s =H'(L—/2, t) = —H'( —L/2, t) =tci/2v, (7b)

where s is the left slope of the profile at x =L/2+'nL,
where the deposition piles have cusps.

A. =O.—In this case the average profile and the fluc-
tuations around it decouple, and (5) assumes the form of
a standard diAusion equation with an array of particle
sources. Because of the symmetry (H, tc) ( —H, —tc),
one only need to consider the case xl & 0 (extra deposi-
tion). Starting from a flat surface, piles build up at
x =L/2+ nL until a parabolic stationary profile

H (x, l) =sL(x/L) + (|co+ tc, /L)t

) =dp+dpH",

provided that H is a sufficiently slow-varying function of
x. Substituting (9) into (5) yields the deterministic
Burgers equation with an eAective coefficient for the
Laplacian, v, n =v X+d /22. This equation can be solved

analytically. In the following we discuss various
features of the solution which can be employed to deter-
mine the phenomenological constants.

The stationary profile for extra deposition (+) is

given by

H+ =ln(coshqx)+q t, 1 =q tanhqL/2, (10)

where we have introduced the dimensionless variables

H=(H t pt)/Hp, x'=sx/Hp, t =ks t/2Hp, (11)

is formed. The excess growth velocity is determined by
K~ which, when combined with the information on the
shape of the profile (parametrized by s), yields v via

(7b).
XWO. —A simultaneous sign change (H, k, x)

( —H, —X, —rc) leaves (5) and (6) invariant. There-
fore we restrict the following analysis to positive X.

Let us first examine how the average profile H might
influence the fluctuations due to the coupling term in

(6). Obviously a uniform translation of H has no efl'ect

on Sh. Less trivial is that a uniform tilt of H only
amounts to a spatial shift of 6h. This is because a term
linear in 6'h with a constant coefficient e can be eliminat-
ed via the Galilean transformation x x —ct. As the
gradient 6'h' which couples to H' is dominated by short
wavelengths if g & 1, we expect that 6h is influenced by
local variations of H only. From these observations one

may plausibly write

'
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FIG. 1. Stationary profiles for the KPZ equation (X)0)
scaled according to (11) with Hp =2v, p/X in the nonlinear case
(nl) and arbitrary Hp for X=0 (1). The upper two curves are
for extra deposition at x =L/2=10, the lower ones for lack of
deposition.

with vo being the growth velocity of a horizontal surface,
and Hp=2v, p/X. The implicit equation for q determines
the finite-size correction to the profile. It is very weak:

q =1 within 1% for L )6. For lack of deposition ( —)
one gets

H =ln(cosqx) —
q t, 1 =q tanqL/2. (12)

In contrast to (10) the L dependence of q here is crucial.
The typical stationary profiles for positive and nega-

tive values of tcl are illustrated in Fig. 1. Solutions to the
linear cases are also included for comparison. The latter
are symmetric with respect to the sign of K ~, and have an

amplitude H(L/2) —H(0) =sL/4. This symmetry is

absent in the nonlinear case: For X & 0 extra deposition
leads to a pile of amplitude H(L/2) —H(0) =sL/2,
while lack of deposition produces a groove of logarithmic
depth H(L/2) —H(0)= —HplnL. For X &0 the linear
and the logarithmic L dependence are exchanged. Thus

by employing the asymmetry and the L dependence of
the amplitude one can determine the sign of k and the
value of s.

In the case X & 0 and tc~ & 0 the stationary profile
essentially has a triangular cross section with a little
rounding near x=0. Though the extra deposition is in

efl'ect only at x=L/2~ nL, due to the internal mecha-
nism which generates the nonlinearity, the surface ac-
quires a finite excess growth velocity ht =t —t p even in

the limit L ~. According to (3) the value of X is

given by 2ht/s . At x =0, t), t must be accounted for by
the curvature term in (5). Measurement of the curva-
ture should yield v, p once h, v is known. Useful informa-
tion can also be gained by studying the buildup and de-

cay of the stationary profile. In particular, starting
from a flat surface at t=0, (5) dictates a sideways

growth of a pile of constant slope s, whose bottom size
increases at a constant velocity Xs until it reaches L.
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Therefore the average excess velocity of the whole sur-

face obeys

t —t p=(X/2)s'g(Xst/L), (13)

where g(r) = r for r((1 and approaches 1 for r)) 1.
We have compared the above predictions of the linear

and nonlinear theories with simulations of the single-step
model in two space dimensions. ' The growth starts
from a flat ("zigzag'") substrate parallel to the (11)
direction of a square lattice. Particles (squares) can be
added provided that the surface length remains constant.
Periodic boundary conditions are imposed. To gain a
computational advantage we employed a parallel updat-
ing scheme on the two checkerboard sublattices: ' ' Eligi-
ble growth sites on a given sublattice are filled simul-

taneously with a probability —. . Time is measured in

units of sweeps of both sublattices, and lengths in units
of a/ J2 where a is the lattice constant. The growth ve-

locity is reduced by including evaporation at sites observ-

ing the above constraint of constant surface length. The
case )i, =0 is achieved by balancing deposition with eva-
poration. '

Before the growth inhomogeneity is switched on we let
the surface evolve until its roughness is fully developed.
Then the growth probability above a fixed substrate site
is changed to a value of pW —,

'
rendering the growth pro-

cess inhomogeneous. As growth is only possible if the
surface length remains constant, K~ is not simply related
to p —

2 in the present model.
Here we only discuss our results for lack of deposition,

p & &, without evaporation. We find the stationary
profile to be of the type (10), meaning k &0. Figure 2

shows the average velocity of the whole surface versus
the time t elapsed after the inhomogeneity was switched
on. The data collapse at different values of L and s

confirms the analytical result (13), and yields
= —0.70+ 0.02, in good agreement with our mean-field
result" k = —1/J2.

Figure 3 shows the rounded part of the inverted sta-
tionary profile at three diff'erent values of s. Finite-size
corrections are negligible for the I values considered.
The x coordinate is scaled by s ' in accordance with
(11). The rounding extends to larger values of xs as s
decreases, thus preventing the data collapse which would
be expected if v,g were constant. A data collapse is
achieved by a different scaling of both x and H(0)

H(x—), in the way shown in the inset. All three curves
fit well with (10) by assuming

Hp =2v, n/k =(1.7+ 0.3)/s. (i4)

The scaling found in Fig. 3 is due to the characteristic
length

R(s) =a [5 )

' '~ (is)

=sRF(x/R, L/R, t/R ) . (16)

If there is no coupling between the Auctuations and the
average profile as in the linear theory, H cannot depend
on R so that the right-hand side of (16) becomes
sLF(x/L, t/L ), in agreement with (8). For any non
linear theory of surface growth, however, (15) and (16)
offer a new way of determining the roughness exponent

which is obtained by equating the imposed asymptotic
slope ~s ~

to the typical slope fluctuations Sh/R
—(R/a)~ ' over the distance R. A data collapse for
systems of diff'erent s is expected if one scales the x coor-
dinate by R and the surface height by sR =a(R/a)~.
This leads to a scaling ansatz for the average profile

H(x, L, t, s) H(O, L, t,—s)
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FIG. 2. Average excess growth velocity for the single-step
model on the square lattice for diff'erent substrate sizes L and
slopes s at the cusp of the profile. From the stationary value at
large times t one can obtain —X/2. The straight line with slope
k'/2 is the early-time behavior predicted by (13).

FIG. 3. Rounded parts of the stationary profiles scaled in

two diAerent ways for the same systems as in Fig. 2. A data
collapse (inset) is obtained only if one assumes that v„sec s
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through the introduction of a tunable characteristic
length R. In the present case, R is simply a measure of
the size of the rounded part of the average profile. The
data collapse in Fig. 3 implies that g= —,', which is the
known value for this model in two space dimensions. '

Our finding of the scaling (16) and the s dependence
(14) of v, s is in perfect agreement with the scaling prop-
erties of the KPZ equation. Like any continuum theory
describing the nonlinear behavior of a discrete model, the
KPZ equation depends on the lower cutoA' or coarse-
graining length (. Hence there is a whole family of pos-
sible coefficients for a given lattice model, '

v(b) =b'--v(1), ~(b) =b'- —~(1) (17)

(and corresponding equations for the other coefficients),
depending on the choice of g(b) =bg(1). By invoking
this freedom, it is possible to relate two systems of
diff'erent asymptotic slope through a scale transformation
similar to (11),but using the scale-dependent coefficients
(17) so that not only the slopes of the transformed sys-

tems match but also the cutoffs. The function F in (16)
is then the solution of the scaled equation for a fixed g
and asymptotic slopes ~ l. Equation (14) is a direct
consequence of this rescaling. Of course, this argument
is valid only if the coarse-graining length g « R.

In conclusion, we have shown that surface profiles ob-
tained from inhomogeneous deposition provide useful in-

formation about the phenomenological equations govern-

ing the growth. If the KPZ equation applies to a given
lattice model, one can easily obtain the value of A, . ' The
notion of a scale-dependent coe%cient v in the nonlinear
case is corroborated in a numerical simulation, and a
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