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Dispersive Chaos in One-Dimensional Traveling-Wave Convection
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We report experiments on weakly nonlinear traveling-wave convection in an annular cell. The evolu-

tion of small-amplitude waves consists of the repetitive formation and sudden collapse of spatially local-

ized pulses. This leads to continuously erratic dynamics with no stable saturated state, even near onset,
and even when convection begins with a unidirectional, nearly spatially uniform state. Such behavior is

reminiscent of simulations of the complex Ginzburg-Landau equation in the limit of strong nonlinear

dispersion.

PACS numbers: 47.25.QV, 47.20.Ky, 47.20.Tg

Convection in a thin, horizontal layer of a binary fluid

mixture which is heated from belo~ has emerged in re-
cent years as an interesting nonequilibriurn system for
studying the physics of pattern formation. When the
temperature diff'erence applied across the layer exceeds a
certain threshold, the quiescent state gives way to a state
of traveling waves (TW). Above onset, a wide variety of
nonlinear TW states can occur. For example, experi-
rnents in narrow rectangular cells' have revealed one-
dimensional TW states in which wave energy "sloshes"
or "blinks" back and forth across the cell. In this
geometry, reflections from the end walls of the cell lead
to the existence of two counterpropagating wave com-
ponents, and Cross has asserted that the saturating non-

linear interaction between them is responsible for the
dynamical behavior. Numerical simulations of a model
of this physics, consisting of a system of two coupled
Ginzburg-Landau equations for the complex wave ampli-
tudes (CGLE), with real coefficients, exhibit behavior
which closely parallels the experimental results. -'

In this paper, we report that, when the same experi-
ments are repeated in an annular cell, in which there are
no end-wall reflections, completely diAerent dynamical
behavior occurs. A small-amplitude, unidirectional wave

train exhibits repeated episodes of linear growth, forma-
tion of a spatially localized pulse, and sudden collapse.
This leads to a continuously erratic state arbitrarily close
to onset, even if convection begins with a state of uni-

directional TW. The measured parameters of the system
are shown to correspond to a limit of strong nonlinear
dispersion in the COLE, and our observations bear a
striking resemblance to numerical simulations' of the
CGLE in this limit. Thus we refer to this spatio-
temporal behavior as "dispersive chaos. " We believe
that our results constitute the first experimental observa-
tion of this kind of dynamical behavior.

We use an improved version of a previously described
apparatus. The cell is an annular channel formed by a
plastic disk and ring which are clamped between a
rhodium-plated, mirror-polished copper bottom plate and
a sapphire top plate. The cell dimensions are 1=0.301

cm height x1.73d radial width x80. 1d mean circumfer-
ence. Cooling water circulates azimuthally over the top
plate, and the bottom plate is heated electrically. The
temperature diff'erence applied across the fluid layer, hT,
is typically 3.9 K and is regulated with a stability of
+ 0.3 mk. We have taken extreme care to minimize and
measure azimuthal nonuniformities in 6T, the cell
height, and the channel width, and to level and symme-
trically insulate the cell. We use shadowgraphic visuali-
zation to record the pattern of the TW. " The convec-
tion is always observed to be one dimensional, consisting
of superpositions of waves which propagate azimuthally
around the cell in opposite directions (here called "left"
and "right"). A computer calculates the profiles of the
left and right TW in real time by complex demodulation
of the shadowgraph data. In addition, a photomulti-
plier samples the light intensity at one point in the sha-
dowgraph image. We obtained most of our results using
a 0.40-wt% solution of ethanol in water at a mean tem-
perature of 27.0'C, for which the separation ratio
y= —0.021, the Prandtl number P=6.22, and the Lewis
number L=0.009. We also report results for fluids
with y = —0.041, —0.050, and —0.069.

The experimental procedure is similar to that used in

previous work. ' ' The applied temperature diAerence
hT is increased in small steps until growing TW appear.
The oscillation threshold and initial frequency are con-
sistent with linear theory, ' ' and the properties of the
TW are independent of amplitude for sufticiently small
amplitude. We identify the linear onset c=(hT hT,)/—
hT, =0 with the value h, T,. at which the sum of the spa-
tial averages of the demodulated left- and right-wave
amplitudes exhibits a vanishing growth rate. By allow-
ing the linear waves to grow to some small amplitude
and then setting v=0, we can produce linear TW whose

amplitudes are time dependent and spatially uniform to
within a factor 2, with nonuniformities corresponding to
a small, fixed spatial variation in e. ' These states typi-
cally exhibit comparable left- and right-wave amplitudes.
However, we can also prepare unidirectional TW merely
by increasing 5T slightly above 6T,—typically by

1990 The American Physical Society 1579



VOLUME 65, NUMBER 13 PHYSICAL REVIEW LETTERS 24 SEPTEMBER 1990

1.02—

I—
(f)

1 00

I—

~ o.es

24-
(A
cr 18-
O

12
LLJ

0 10 20 30
T I ME, HOURS

40

24-
FIG. 1. The light intensity measured at one spatial point in

the shadowgraph image as a function of time during the evolu-
tion of a unidirectional state at ~=2.5x10 ', for y= —0.021,
The behavior consists of repeated linear growth and sudden

pulsing, followed by an abrupt collapse to small amplitude.
During this entire run, the left-going wave component
remained at zero amplitude.
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s=3x10 . At first, both TW grow in time with an
amplitude-independent linear growth rate. Then, howev-

er, as predicted in Ref. 3, nonlinear eAects cause one of
the TW to decay. We can then reduce the amplitude of
the remaining TW by briefly reducing c below zero.
This linear TW state remains unidirectional at least for
times of the order of 1 day, indicating that reflections
from imperfections in the apparatus are weak.

Once a unidirectional linear state has been character-
ized, we can raise a above zero again and study its non-

linear evolution. We observe that the evolution of a uni-
directional wave consists of repeated pulses in space and
time. Figure 1 shows the light-intensity signal at one
spatial point during this evolution, for y= —0.021. The
gradual linear growth seen at the beginning gives way to
a burst of amplitude, followed by a sudden collapse.
This sequence then repeats irregularly. For no positive e
does the system ever find a stable, saturated nonlinear
TW state. Similar results are obtained for y= —0.041
and —0.050.

We illustrate the spatiotemporal character of this
pulsing in Fig. 2. Initially, the state consists of srnall-

amplitude waves traveling to the right at the linear phase
velocity sI,„,with a fairly uniform spatial amplitude
profile. As the wave amplitude grows, the system forms
a spatially localized pulse which fills from one-tenth to
one-half of the cell, depending on parameters. The prop-
agation velocity drops abruptly at some point during the
formation of this pulse to a new value s„„„i,„(si, „/10.
After further growth and propagation at s„,„i,„,the wave

amplitude abruptly collapses, and the process repeats.
The spatial location of subsequent pulses appears to be
random. The nonlinear pulse velocity s„,„I,„

is approxi-
mately constant throughout the life of each pulse and
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has approximately the same value for difterent pulses.
This pulsing behavior occurs over a range of e and y.

If we begin with a unidirectional state, wave energy must

gradually appear in the oppositely propagating com-
ponent, on a time scale of about 10 pulse cycles. Alter-
natively, we may start with a state which contains simi-
lar energy in both components. In either case, the pulse
behavior described above appears to occur independently
in the individual wave components. This is illustrated in

Fig. 3, which also shows that the density of pulses in

time and space increases with c.
We have seen similar spatiotemporal pulsing at

y= —0.021, —0.041, and —0.050. As y is decreased
from —0.021 to —0.050, the average value of s„,„i;„/si,„

at a=0 remains constant at 0.08, while the average tem-
poral duration i„ofthe pulses decreases from 33+ 5 to
12 ~ 3 (measured in units of the vertical thermal

FIG. 2. Hidden-line plots showing the spatiotemporal be-
havior of the right-going (top) and left-going (bottom) wave-

amplitude profiles at e =
1 8 x 10, during a run with

y= —0.021. The traces in these plots show the wave ampli-
tude as a function of position at subsequent times, with time
proceeding upwards. An initial, nearly uniform small-
amplitude state of linear waves grows up into a double-humped
spatial pulse which fills about half of the cell. This pulse will

collapse everywhere in space and then grow up again. The
left-going wave component remained at zero amplitude during
this run.
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FIG, 3, Spatiotemporal behavior of the right (top) and left

(bottom) wave components during a run at a=5.6x10 ' with

y= —0.0.21. Both wave components exhibit a profusion of
strongly localized pulses, and the evolutions of the two com-

ponents appear to be independent. Note, in comparison with

Fig. 2, that the density of pulses in space and in time is greater
and that the spatial extent of the pulses is smaller at larger
values of c.

dilt'usion time). For y= —0.069, however, the behavior
is completely dift'erent. The first pulse seen at e) 0
evolves into a strongly localized, standi onar& confined
state —i.e. , s„«I1„=0and r~ =~. This agrees with re-
cent observations at y= —0.09 and —0.08 by Niemela,
Ahlers, and Cannell and Anderson and Behringer, but
it is quite puzzling, since both s„,„I,„and ~~ take values
at this y which do not match extrapolations in y from
the other data.

We can understand our observation of nonlinear puls-

ing of unidirectional TW in the context of the dispersive
limit of the CGLE. With suitable scaling, this equation
can be written to lowest order as follows: ' '

(jlA 9A . 9 -A
+s =A+(I+ic~), —g(1+iv ) A~ A. (1)

Here A is th e amplitude of a right-going wave with

group velocity s, cI is the linear dispersion coefficient, c.
is the nonlinear frequency-renormalization coefficient,
and g = ~ 1 is a saturation parameter. For TW convec-

tion, all the linear parameters in Eq. (I) are well known,
on the basis of both theory and experiment. " In partic-
ular, c

~
=0.022 ( —0.015, —0.028) for y = —0.021

( —0.041 —0.050). In general, other nonlinear terms
must be added to Eq. (1) in order to properly model this
physical system. For example, g= —

1 for TW convec-
tion, "-so that a higher-order nonlinear term with a pos-
itive coefficient would be required to explain a saturated
nonlinear state. Furthermore, in order to correctly mod-
el states of counterpropagating TW, one must write a
corresponding CGLE for a left-wave amplitude 8, with

s —s, and one must include in both equations cou-
pling terms like ~A ~-B and ~B~'-A to account for the in-

teractions between the two waves. However, the obser-
vation that oppositely propagating wave components
evolve independently means that these nonlinear cou-

pling terms are small and are not the cause of the
dynamical behavior we observe. Modulational instabili-
ty'' can also be eliminated as the cause of this behavior.
This instability is only important for saturated nonlinear
waves, which are not seen in our experiments.

The key to understanding our observations lies in the
observation that the nonlinear frequency-renormalization
coefficient c. has a very large magnitude. We can make
a measurement of c. by creating a unidirectional state of
linear TW, raising s above zero, and observing the devel-

opment of its growth rate and frequency at low ampli-
tudes, before any pulsing behavior occurs. Initially after
such a jump in e, the wave exhibits linear growth in its
spatially averaged amplitude (A) with no obvious
modification of the spatial profile. Once (A) becomes
sufficiently large, however, we observe that the growth
rate y and the oscillation frequency 0 begin to deviate
from the linear values by amounts By, BA cc(A)-. If we

substitute a solution exp[(y+iA)t] into Eq. (1), we

easily calculate By = —g(A) — and BQ = —gc~(A)-
Thus, our measurements of BQ and B) give c~=BQ/
6y= —7.2+ 1.2 for y= —0.021. This is comparable to
the value e = —9.7 calculated by Schopf' f th
fluid. I'

or is

The observation that c. has a very large magnitude
suggests that nonlinear dispersion is the cause of our
pulsing behavior. We come to this conclusion by observ-
ing that, for the parameters of our experiments, Eq. (1)
can be transformed into a dispersive form which has
been found numerically to exhibit similar behavior. '-'

Since pulsing is observed for unidirectional TW, we can
transform Eq. (1) into a comoving frame, in which the
second term on the left-hand side vanishes. Because
e « —1, we can approximate the coe%cient of the non-
linear term as ic . Finally, because we observe similar
behavior for both positive and negative cI, its sign is ir-
relevant. Thus, changing the sign of cI and taking the
complex conjugate of Eq. (1), we arrive at the equation
that was studied by Bretherton and Spiegel. ' These au-
thors observed a pulsing behavior for cI ~0 which bears
a strong resemblance to our experimental observations
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(cf. Fig. 3b of Ref. 3). They also gave a qualitative ex-
planation for this pulsing: Because the nonlinear term in

the CGLE is almost entirely imaginary, it acts only to
damp the waves in regions of strong spatial gradients.
This damping causes the edges of a spatial nonuniformi-
ty to steepen and contract, while its peak grows linearly,
almost without saturation. Nonlinear dispersion, rather
than saturation or modulational instability, dominates
the dynamics.

The reason why erratic pulsing does not occur for

y ( —0.05 is that the nonlinear frequency-renor-
malization coefficient c2 decreases in magnitude as y is
decreased. " Thus, for sufficiently negative y, nonlinear
dispersion ceases to dominate the dynamics, and some
other mechanism takes over to stabilize motionless
confined states. The reason why erratic pulsing does not
occur in a rectangular cell for the same fluid parameters
for which it is seen in annulus may be that the loss upon
reflection of the TW from the end walls of the cell damps
the growth of pulses. One might model this damping by
increasing the real part of the nonlinear coefficient in the
CGLE. In this case, the imaginary part of the nonlinear
term will not be as important in the dynamics as its real
part or the real parts of cross terms due to the presence
of the other wave component. This puts the CGLE back
in the "saturating" limit studied in Ref. 2.

To summarize, experiments on one-dimensional TW
convection in an annular cell have revealed a new kind of
spatiotemporal behavior which is characterized by the
repetitive formation and sudden collapse of spatially lo-
calized pulses. Strong nonlinear dispersion appears to be
the cause of this behavior.
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